El monstruo Subatómico

Por Isaac Asimov

[…] Electricidad y magnetismo están íntimamente relacionados; en realidad, resultan inseparables. Todo lo que posee un campo eléctrico tiene un campo magnético, y viceversa. De hecho, los científicos normalmente hablan de un campo electromagnético, más que de un campo eléctrico o magnético por separado. Hablan de la luz como de una radiación electromagnética, y de la interacción electromagnética como de una de las cuatro interacciones fundamentales de la Naturaleza.

Naturalmente, pues, no resulta sorprendente que la electricidad v el magnetismo, cuando se consideran por separado, muestren numerosas semejanzas. Así, un imán tiene dos polos, que presentan extremos opuestos, por así decirlo, de propiedades magnéticas. Les llamados «polo norte» y «polo sur». Existe una atracción entre los polos norte y sur, y una repulsión entre dos polos norte o entre dos polos sur.

De forma semejante, un sistema eléctrico tiene dos extremos opuestos, que llamamos «carga positiva» y «carga negativa». Existe una atracción entre una carga positiva y otra negativa, y una repulsión entre dos cargas positivas o entre dos cargas negativas. En cada caso, la atracción y la repulsión son de intensidades iguales, y tanto la atracción como la repulsión se hallan en proporción inversa al cuadrado de la distancia.

Sin embargo, queda una enorme diferencia de una clase.

Suponga que tiene una varilla de material aislante en la que, de una forma u otra, ha producido en un extremo una carga negativa y, en la otra, una carga positiva. Así, pues, si se rompe la varilla por la mitad, una de esas mitades tiene una carga completamente negativa, y la otra mitad es enteramente positiva. Y lo que es más, existen partículas subatómicas, como los electrones, que llevan sólo una carga negativa y otros, como los protones, que llevan sólo una carga positiva.

No obstante, supongamos que tiene un imán largo, con un polo norte en un extremo y un polo sur en el otro. Si lo rompemos por la mitad, ¿existe una mitad enteramente polo norte y otra mitad enteramente polo sur?

¡No! Si se parte un imán en dos, la mitad del polo norte, al instante, desarrolla un polo sur en donde se ha roto, mientras que la mitad del polo sur desarrolla en el punto de ruptura un polo norte. Es imposible hacer nada para que cualquier objeto posea sólo un polo magnético; ambos están siempre presentes. Incluso las partículas subatómicas que poseen una carga eléctrica y, por ende, un campo magnético asociado, poseen un polo norte y un polo sur.
Tampoco parece que existan partículas subatómicas concretas que lleven solo polos norte o sólo polos sur, aunque hay incontables partículas subatómicas que llevan sólo cargas positivas o sólo cargas negativas. No parece existir algo, en otras palabras, como un «monopolo magnético».

Hacia 1870, cuando el físico escocés James Clerk Maxwell elaboró por primera vez las relaciones matemáticas que describían el campo electromagnético como un fenómeno unificado, presentó el mundo con cuatro concisas ecuaciones que parecían totalmente suficientes para el propósito para el que habían sido ideadas. En caso de haber existido monopolos magnéticos, las cuatro ecuaciones hubieran sido bellamente simétricas, con lo que electricidad y magnetismo habrían representado una especie de imagen de espejo uno del otro. Sin embargo, Maxwell dio por supuesto que los polos magnéticos siempre existían por parejas, mientras que las cargas eléctricas no, y esto, forzosamente, introducía una asimetría.

A los científicos les disgustan las asimetrías, puesto que ofenden el sentido estético e interfieren en la simplicidad (el desiderátum de la ciencia perfecta), así que ha existido siempre una constante sensación de que el monopolo debería existir; de que su no existencia representa un defecto en el diseño cósmico.
Después de que fuese descubierto el electrón, se llegó a saber finalmente que la carga eléctrica está cuantificada; es decir, que todas las cargas eléctricas son múltiplos exactos de algún valor fundamental más pequeño.

Así, todos los electrones poseen una idéntica carga negativa y todos los protones una carga positiva idéntica, y las dos clases de carga son exactamente iguales la una a la otra en tamaño. Todos los otros objetos con carga conocidos tienen una carga eléctrica que es exactamente igual a la del electrón, o a la del protón, o es un múltiplo exacto de una u otra.

Se cree que los quarks tienen cargas iguales a 1/3 y 2/3 de la del electrón o protón, pero los quarks no han sido nunca aislados; e incluso aunque lo fuesen, esto meramente representaría que el valor fundamental más pequeño es un tercio de lo que se creía que era. El principio de la cuantificación permanecería.

¿Por qué la carga eléctrica debe cuantificarse? ¿Por qué no podría existir en un valor desigual, exactamente como lo hace la masa? A fin de cuentas, la masa de un protón es un múltiplo enteramente desigual de la masa de un electrón. ¿Por qué no habría de ocurrir lo mismo con la carga?

En 1931, el físico inglés Paul A. M. Dirac planteó la cuestión de una forma matemática, y llegó a la decisión de que esta cuantificación de la carga sería una necesidad lógica si existiesen los monopolos magnéticos. En realidad, aun cuando hubiese sólo un monopolo en algún lugar del Universo, la cuantificación de la carga sería una necesidad.

Resulta tentador argumentar a la inversa, naturalmente: puesto que la carga eléctrica está cuantificada, los monopolos magnéticos deben existir en algún lugar. Parecía acertado buscarlos.
Pero ¿dónde y cómo pueden encontrarse, si es que existen? Los físicos no lo sabían y, lo que era peor, no estaban seguros de cuáles podrían ser las propiedades de esos monopolos. Parecía natural suponer que eran partículas con bastante masa, porque de no serlo no serían muy comunes y no podrían producirse con facilidad en el laboratorio; y esto explicaría el por qué nadie había tropezado con ellos de manera accidental.

No existió ninguna guía teórica hasta los años setenta, cuando había gente elaborando algunas grandes teorías unificadas con el propósito de combinar las interacciones débiles, fuertes y electromagnéticas, todo ello bajo una simple serie de ecuaciones.

En 1974, un físico neerlandés, Gerard’t Hooft, y un físico soviético, Alexandr Poliakov, mostraron, de forma independiente, que de las grandes teorías unificadas podía deducirse que los monopolos magnéticos debían existir, y que no tienen meramente mucha masa, sino que son unos monstruos.

Aunque un monopolo sería aún más pequeño que un protón, envuelta en su pequeñez podría haber una masa de entre diez trillones y diez cuatrillones de veces la del protón. Si se encontrase en el extremo superior de este ámbito, un monopolo tendría un equivalente en energía de 10.000.000.000.000.000.000.000.000.000 electrón-voltios (10E28 eV).

¿Y qué cantidad sería eso en masa? Al parecer, un monopolo magnético podría tener una masa de hasta 1,8E-9 gramos. Esto equivale a la masa de 20 espermatozoides humanos, todos metidos en una sola partícula subatómica.

¿Cómo pueden formarse estos monstruos subatómicos? No existe modo alguno de que los seres humanos puedan encerrar tanta energía en un volumen subatómico de espacio, ni en la actualidad ni en un futuro previsible. En realidad, no existe ningún proceso natural que tenga lugar en alguna parte del Universo ahora (por lo que sabemos) que pudiera crear una partícula con una masa tan monstruosa.
La única posibilidad es volver al Big Bang, o gran explosión inicial, cuando las temperaturas eran increíblemente elevadas y las energías estaban increíblemente concentradas. Se calcula que los monopolos debieron formarse sólo 1E-34 segundos después del Big Bang. Después, el Universo habría sido demasiado frío y demasiado grande para este propósito.

Probablemente, se formaron los monopolos norte y sur, quizás en cantidades enormes. Probablemente, un gran número de ellos se aniquilaron los unos a los otros, pero cierto número debió de sobrevivir, simplemente porque, por pura casualidad, no llegaron a encontrar otros del tipo opuesto. Después de que los monopolos sobrevivieran cierto tiempo, la firme expansión del Universo hizo cada vez menos probable que se produjesen colisiones, y esto aseguró su ulterior supervivencia. Por lo tanto, hoy existe cierto número de ellos flotando en torno del Universo.

¿Cuántos? No demasiados, pues por encima de cierto número el efecto gravitatorio de esas monstruosas partículas hubiera asegurado que el Universo, antes de ahora, alcanzase un tamaño máximo y se derrumbase de nuevo por su propio impulso gravitatorio. En otras palabras, podemos calcular una densidad máxima de monopolos en el Universo simplemente reconociendo el hecho de que nosotros mismos existimos.
Sin embargo, aunque en escaso número, un monopolo debería, de vez en cuando, moverse en las proximidades de un aparato de grabación. ¿Cómo podría detectarse?

En un principio, los científicos, suponían que los monopolos se movían a casi la velocidad de la luz, como lo hacen las partículas de rayos cósmicos; y corno las partículas de rayos cósmicos, los monopolos deberían estrellarse contra otras partículas en su camino y producir una lluvia de radiación secundaria que se podría detectar con facilidad, y a partir de la cual el mismo monopolo se podría identificar.

Ahora que se cree que el monopolo es de una masa monstruosa, las cosas han cambiado. Estos enormes monopolos no podrían acumular suficiente energía para moverse muy rápidamente, y se estima que deben de viajar a una velocidad de un par de centenares de kilómetros por segundo; es decir, menos de una milésima parte de la velocidad de la luz. A tan bajas velocidades, los monopolos simplemente se deslizarían al lado y a través de la materia, sin dejar ninguna señal de la que hablar. Es posible que esto explique el que hasta aquí no se hubieran descubierto los monopolos.
Bueno, entonces, ¿qué debe hacerse?

Un físico de la Universidad de Stanford, Blas Cabrera, tuvo una idea. Un imán que impulse energía a través de una bobina de cable enviará una oleada de corriente eléctrica a través de ese cable. (Esto se conoce desde hace un siglo y medio.) ¿Por qué no instalar una bobina así y esperar? Tal vez pasaría un monopolo magnético a través de la bobina y señalaría su paso mediante una corriente eléctrica. Cabrera calculó las posibilidades de que esto sucediera basándose en la densidad más alta del monopolo dado el hecho de que el Universo existe, y decidió que semejante eventualidad podía ocurrir como promedio, cada seis meses.

Por lo tanto, Cabrera instaló una bobina de metal de niobio, y la mantuvo a una temperatura cercana al cero absoluto. En esas condiciones, el niobio es superconductor y posee una resistencia cero ante una corriente eléctrica. Esto significa que si de alguna forma comienza a fluir por el mismo una corriente, esa corriente fluirá de manera indefinida. Un monopolo que pase a través de la bobina no dará lugar a una oleada instantánea de corriente, sino a una corriente continua.

Naturalmente, una corriente podría ser iniciada por cualquier viejo campo magnético que se encontrase cerca; el propio campo magnético de la Tierra, los que son establecidos por cualquiera de los mecanismos técnicos que le rodean, incluso por pedazos de metal que se estén moviendo porque se encuentran en el bolsillo de alguien.
Por tanto, Cabrera colocó el carrete dentro de un globo de plomo superconductor, el cual estaba dentro de un segundo globo de plomo superconductor. Los campos magnéticos ordinarios no traspasarían el plomo superconductor, pero un monopolo magnético sí lo haría.
Aguardó durante cuatro meses y no sucedió nada. El nivel de corriente, señalado en un rollo móvil de papel, permaneció durante todo ese tiempo cerca de cero. Esto en sí era bueno. Demostraba que había excluido con éxito los campos magnéticos al azar.
Luego, a la 1.53 de la tarde del 14 de febrero de 1982, se produjo un flujo repentino de electricidad, y en la cantidad exacta que cabría esperar si hubiese pasado a través de allí un monopolo magnético.

Cabrera comprobó todas las posibles eventualidades que podían haber iniciado la corriente sin la ayuda de un monopolo, y no pudo encontrar nada. El monopolo parecía la única alternativa posible.
Así pues, ¿se ha detectado el esquivo monopolo? En este caso, se trata de una notable proeza y de un fuerte apoyo a la gran teoría unificada.

Sin embargo, el problema es que no se repitió ese suceso único, y resulta difícil basar algo en un solo caso.

Asimismo. La estimación de Cabrera del número de monopolos que están flotando por ahí se basaba en el hecho de que el Universo se encuentra aún en expansión. Algunas personas creen que existe una restricción más fuerte derivada de la posibilidad de que los monopolos que flotan por la galaxia borren el campo magnético galáctico general. Puesto que el campo magnético galáctico aún existe (aunque sea muy débil), esto podría establecer un valor máximo de la densidad del monopolo aún mucho más bajo, tan bajo tal vez como 1/10.000 de la cifra de Cabrera.

Si eso fuese así, cabría esperar que pasase un monopolo a través de su carrete una vez cada 5.000 años como promedio. Y en este caso que hubiese pasado uno después de esperar sólo cuatro meses es pedir una suerte excesiva, y se hace difícil creer que se tratase de un monopolo.

Sólo se puede hacer una cosa, y los físicos lo están haciendo. Continúan sus investigaciones. Cabrera está construyendo una versión mayor y mejor de su mecanismo, lo cual incrementará en cincuenta veces sus posibilidades de hallar un monopolo. Otros físicos están ideando otras formas de abordar su descubrimiento.

En los próximos años, la búsqueda del monopolo aumentará enormemente en intensidad, porque hay mucho en juego. Su descubrimiento definitivo nos proporcionará una indicación de las propiedades del monstruo subatómico y de sus números. Y a partir de ello, podemos aprender cosas acerca del principio del Universo, por no hablar de su presente y de su futuro, algo que, en caso contrario, tal vez jamás averiguaríamos.

Y, naturalmente, hay un Premio Nobel que está esperando a alguien.

Fragmento tomado del libro de divulgación científica El Monstruo Subatómico: una exploración de los misterios del universo por Isaac Asimov. ©1993, Salvat Editores, S.A. Barcelona. España