El Universo Amniótico

por Carl Sagan

“El Cerebro de Broca” Capítulo 25 (fragmentos)

Para un hombre es tan natural morir como nacer; y para un niño pequeño, tal vez, lo uno es tan penoso como lo otro. FRANCIS BACON, Of Death (1612)

La cosa más bella que podemos experimental es lo misterioso. Es la fuente de toda verdad y ciencia. Aquel para quien esa emoción es ajena, aquel que ya no puede maravillarse y extasiarse ante el miedo, vale tanto como un muerto: sus ojos están cerrados… Saber que lo impenetrable para nosotros existe realmente, manifestándose como la prudencia máxima y la belleza más radiante que nuestras torpes capacidades pueden comprender tan solo en sus formas más primitivas… este conocimiento, este sentimiento, se encuentra en el centro de la verdadera religiosidad. En ese sentido, y sólo en ese sentido, pertenezco a las filas de los hombres religiosos devotos. ALBERT EINSTEIN, Lo que creo (1930)

William Wolcott murió y subió al cielo. O eso parecía. Antes de que le llevasen al quirófano, le hicieron saber que la intervención quirúrgica comportaba un cierto riesgo. La operación fue un éxito, pero cuando la anestesia dejaba de producir sus efectos, su corazón entró en fibrilación y murió. Le pareció que, de alguna manera, había dejado su cuerpo y era capaz de situarse por encima de él… Lo vio debajo suyo, marchito y patético, cubierto tan sólo por una sábana, tumbado sobre una superficie dura e implacable. Se puso algo triste; miró su cuerpo por última vez —desde una gran altura, según le pareció— y prosiguió su viaje hacia arriba. Su entorno estaba sumido en una extraña oscuridad penetrante, pero se dio cuenta de que todo se estaba volviendo más brillante a medida que subía. Luego divisó una luz en la lejanía, una luz muy intensa. Penetró en una especie de reino radiante y allí mismo, justo por encima de él, pudo percibir una silueta, magníficamente iluminada desde atrás, una gran figura venerable a la que se iba aproximando sin esfuerzo. Wolcott se esforzó por ver Su cara…
Y entonces despertó. En el hospital le habían aplicado a toda velocidad el desfibrilador y acababa de resucitar en el último instante. En realidad, su corazón había dejado de latir y, según algunas definiciones de un proceso poco comprendido, había muerto. Wolcott quedó convencido de haber muerto verdaderamente, de que se le había otorgado permiso para dar una ojeada a la vida después de la muerte para tener una confirmación de la teología judeocristiana.
A lo largo y ancho del mundo se han producido experiencias parecidas, hoy en día muy documentadas por médicos y otros. Estas Epifanías peritanáticas (próximas a la muerte) han sido experimentadas no sólo por personas de religiosidad occidental sino también por hindúes, budistas y escépticos. Es posible que muchas de nuestras ideas convencionales acerca del cielo procedan de experiencias próximas a la muerte de ese tipo, que habrán ido produciéndose a lo largo de los milenios. Ninguna noticia podía ser más interesante o más esperanzadora que la relatada por un muerto regresado: la explicación de que hay un viaje y una vida después de la muerte, de que hay un Dios que nos espera y de que al morir nos sentimos agradecidos y elevados, aterrados y anonadados.
Por lo que yo sé, estas experiencias pueden ser exactamente lo que representan, así como una justificación de la piadosa fe que tantas veces ha sufrido los embates de la ciencia en los últimos siglos. A mí personalmente me gustaría mucho que existiese una vida después de la muerte, en especial si eso fuera a permitirme seguir aprendiendo sobre este mundo y otros, si me proporcionara la posibilidad de descubrir cómo se desarrolla la historia. Pero también soy un científico y, por lo tanto, pienso también en otras explicaciones posibles. ¿Cómo puede ser que personas de todas las edades, culturas y predisposiciones escatológicas, experimenten las mismas experiencias estando próximos a la muerte?
Sabemos que esas experiencias pueden inducirse con bastante regularidad, de forma contracultural, a través de las drogas psicodélicas. Las experiencias de abandono del cuerpo son inducidas por sustancias anestésicas disociativas como las cetaminas [2-(o-clorofenil)-2-(metila-mino) ciclohexanonas]. La ilusión de volar es inducida por la atropina y otros alcaloides extraídos de la belladona, y esas moléculas obtenidas de la mandrágora o del estramonio han sido utilizadas normalmente por las brujas europeas y los curanderos norteamericanos para gozar, en el trance del éxtasis religioso, de un vuelo placentero y glorioso. La MDA [2,4-metilendioxianfetamina] tiende a provocar una regresión de edad, un acceso a experiencias juveniles e infantiles que considerábamos totalmente olvidadas. La DNT [N,N-dimetiltriptamina] provoca micropsia y macropsia, las sensaciones de que el mundo se encoge o se expande, respectivamente; algo parecido a lo que le pasa a Alicia después de obedecer las instrucciones escritas sobre los pequeños recipientes que dicen: «Cómeme» o «Bébeme». El LSD [dietilamida del ácido lisérgico] provoca una sensación de unión con el universo, como en la identificación de Brahma con Atman en el sistema de creencias hindú.
¿Es posible que dispongamos previamente en nuestra psíquis de la experiencia mística hindú y que sólo necesitemos 200 microgramos de LSD para ponerla de manifiesto? Si se segrega algo parecido a la cetamina en momentos de peligro mortal y los que regresan de una experiencia de ese tipo siempre cuentan el mismo relato del cielo y de Dios, ¿no debe haber acaso una forma en que las religiones occidentales, así como las orientales, estén grabadas en la arquitectura neuronal de nuestros cerebros?
Resulta difícil pensar que la evolución haya buscado seleccionar algunos cerebros predispuestos a tales experiencias, ya que parece ser que nadie muere ni deja de reproducir un deseo de fervor místico. ¿Pueden deberse esas experiencias inducidas por drogas únicamente a algún defecto evolutivo de conexiones cerebrales que, ocasionalmente, hace aparecer percepciones alteradas del mundo? A mi criterio, esa posibilidad es extremadamente poco plausible y tal vez no sea sino un desesperado intento racionalista de evitar un encuentro frontal con lo místico.
La única alternativa que se me ocurre es la de que todo ser humano sin excepción ya debe haber sufrido una experiencia similar a la de los viajeros que regresan de la tierra de la muerte, la sensación de vuelo, el paso de la oscuridad a la luz. Una experiencia en la que, al menos en algunas ocasiones, puede entreverse una figura heroica, bañada en resplandor y gloria. Esa experiencia común a todos es el nacimiento.
Stanislav Grof, médico y psiquiatra, fue el primero en utilizar LSD y otras drogas psicodélicas en estudios de psicoterapia. Su trabajo es bastante anterior a la cultura de la droga en Norteamérica; se inició en Praga, Checoslovaquia en 1956, prosiguiendo años más tarde en Baltimore, Maryland. Es probable que Grof posea más experiencia científica continuada sobre los efectos de las drogas psicodélicas en pacientes que ningún otro terapeuta. Sostiene que, así como el LSD puede utilizarse con fines recreativos y estéticos, también puede tener otros efectos más profundos, uno de los cuales es el recuerdo preciso de experiencias perinatales. «Perinatal» es un neologismo que significa «próximo al nacimiento», y no se refiere sólo a los momentos posteriores al nacimiento, sino también a los anteriores. Es del mismo tipo que peritanático, próximo a la muerte. Grof dispone de historias clínicas de muchos pacientes que, tras una serie adecuada de sesiones, vuelven a experimentar realmente experiencias profundas de los tiempos perinatales, ocurridas hace mucho tiempo y previamente consideradas imposibles de refrescar por nuestra imperfecta memoria. De hecho es una experiencia bastante habitual con LSD, no limitada a los pacientes de Grof.
Grof distingue cuatro estadios perinatales, cubiertos por la terapia con fármacos psicodélicos. El Estadio 1 es el de la complacencia dichosa del niño en el seno, libre de cualquier ansiedad y centro de un pequeño universo oscuro y caliente —un cosmos en una bolsa amniótica—. En ese estado intrauterino, parece ser que el feto experimenta algo muy parecido al éxtasis oceánico descrito por Freud como una de las fuentes de la sensibilidad religiosa. Evidentemente, el feto se mueve. Posiblemente justo antes de nacer esté bien alerta, tal vez más incluso que justo después de nacer. No parece imposible que podamos recordar de manera imperfecta ese edén, esa edad de oro cuando cualquier necesidad —de alimentos, oxígeno, calor y expulsión de restos— quedaba cubierta automáticamente por un sistema de apoyo a la vida soberbiamente diseñado. Un estado que, en una reposición más o menos precisa, se describe como «estar fundido con el universo».
En el Estadio 2 se inician las contracciones uterinas. La base del estable ambiente intrauterino, las paredes a las que se fija la bolsa amniótica, se vuelven traidoras. El feto es comprimido terriblemente. El universo parece pulsar; un mundo benigno se convierte de repente en una cámara de tortura. Las contracciones pueden durar horas, y se presentan en forma intermitente. A medida que pasa el tiempo, aumenta su intensidad. No hay posibilidad de que cesen. El feto no ha hecho nada para merecer esa suerte; es un inocente cuyo cosmos se le ha vuelto en contra, proporcionándole una agonía en apariencia sin fin. La dureza de esa experiencia es evidente para cualquiera que haya visto una distorsión craneal neonatal, la que sigue apreciándose bastantes días después del nacimiento. Así como es fácil comprender una fuerte motivación por borrar decididamente toda traza de esa agonía, ¿no es posible admitir que resurja acaso, bajo determinadas condiciones? Acaso, sugiere Grof, el vago y reprimido momento de esa lejana experiencia puede incitar fantasías paranoicas. Incluso puede explicar nuestras humanas predilecciones por el sadismo y el masoquismo, por la identificación entre asaltante y víctima, por ese gusto infantil por la destrucción. Grof indica que las reposiciones en el siguiente estadio están relacionadas con imágenes de mareas y terremotos, las imágenes análogas en el mundo físico a la traición intrauterina.
El Estadio 3 es el final del proceso del nacimiento, cuando la cabeza de la criatura se ha introducido en la cérvix y, a través de sus párpados cerrados, percibe un túnel iluminado en su extremo por el radiante esplendor del mundo extrauterino. El descubrimiento de la luz realizado por una criatura que ha vivido toda su existencia en la oscuridad debe constituir una experiencia profunda e inolvidable. Y allí se entrevé confusamente, por la poca resolución de los ojos del recién nacido, una figura enorme parecida a un dios, rodeada de un halo de luz (la comadrona, el medico o el padre). Al término de un trabajo monstruoso, el bebé vuela desde el universo intrauterino y se eleva hacia las luces y los dioses.
El Estadio 4 es la época inmediatamente posterior al nacimiento, cuando ya se ha disipado la apnea perinatal, cuando la criatura es fajada y cubierta, acariciada y alimentada. Si estos supuestos de Grof son acertados, el contraste entre los Estadios 1 y 2 y los Estadios 2 y 4, en una criatura totalmente desprovista de otras experiencias, debe ser profundo y sorprendente; y la importancia del Estadio 3, como tránsito entre la agonía y, cuando menos, un tierno simulacro de la unidad cósmica del Estadio 1, debe ejercer una poderosa influencia en la visión posterior del mundo que tendrá esa criatura.
Evidentemente, cabe todo el escepticismo que se quiera en la explicación de Grof y en mi versión de ella. Hay muchas preguntas que responder. ¿Son capaces de acordarse del Estadio 2 las criaturas nacidas por cesárea? Al ser sometidas a tratamiento con fármacos psicodélicos, ¿reproducen menos imágenes de terremotos y mareas catastróficas que las nacidas en partos normales? Y contrariamente, ¿son más propensas a contraer el peso psicológico del Estadio 2 las criaturas nacidas tras contracciones uterinas especialmente dolorosas inducidas al «trabajo electivo» por la hormona oxitocina? Si a la madre se le proporciona un fuerte sedante, ¿recordará la criatura, al alcanzar la madurez, una transición muy distinta desde el Estadio 1 directamente al Estadio 4, sin hacer nunca un relato radiante en una experiencia peritanática? ¿Pueden los neonatos resolver una imagen en el momento del nacimiento o son tan sólo sensibles a la luz y a la oscuridad? ¿Puede ser que la descripción, en una experiencia próxima a la muerte, de un dios brillante y cubierto de pelo sea una reposición perfeccionada de una imagen neonatal imperfecta? ¿Se seleccionaron los pacientes de Grof entre la más amplia serie posible de seres humanos, o están restringidos los relatos a un subconjunto no representativo de la comunidad humana?
Es fácil comprender que puede haber más objeciones personales a esas ideas. Una resistencia parecida tal vez a ese tipo de chauvinismo que se detecta en algunas justificaciones de las costumbres gastronómicas de los carnívoros: las langostas marinas no tienen sistema nervioso central; no les sabe mal que las dejen caer vivas en el agua hirviendo. Bien, es posible. Pero los aficionados a las langostas tienen evidente interés en favor de esa hipótesis concreta sobre la neurofisiología del dolor. De igual forma, me pregunto si los adultos no tienen un marcado interés por creer que las criaturas sólo poseen poderes de percepción y memoria muy limitados, que no existe forma en que la experiencia del nacimiento pueda ejercer una influencia profunda y, en particular, una influencia profundamente negativa.
Si Grof está efectivamente en lo cierto, debemos preguntarnos por qué son posibles esos recuerdos. Por qué, si la experiencia perinatal ha producido una enorme desdicha, la evolución no ha descartado las consecuencias psicológicas negativas. Hay algunos parámetros que los recién nacidos tienen que cumplir: tienen que ser buenos chupadores; si no, morirían. Deben ser bellos, porque por lo menos en épocas anteriores de la historia humana, las criaturas que de alguna manera parecían atrayentes eran cuidadas con mayor esmero. Pero, ¿deben ver imágenes de su entorno los recién nacidos? ¿Deben recordar los horrores de la experiencia perinatal? ¿En qué sentido hay un valor de supervivencia en ello? La respuesta puede ser la de que los pros superan a las contras; tal vez la pérdida de un universo al que estamos perfectamente ajustados nos estimula poderosamente a cambiar el mundo y a mejorar las condiciones del hombre. Tal vez esta voluntad de esfuerzo y búsqueda que posee el espíritu humano no existiría si no fuese por los horrores del nacimiento.
Me fascina —y así lo puse de manifiesto en mi obra Los dragones del Edén— el hecho de que el dolor del trabajo de parto sea especialmente importante en las madres humanas, debido al enorme crecimiento del cerebro en los últimos millones de años. Pareciera que nuestra creciente inteligencia fuese la fuente de nuestra desdicha; pero también indicaría que nuestra desdicha es la fuente de nuestra fuerza como especie.
Estas ideas pueden arrojar alguna luz sobre el origen y la naturaleza de la religión. La mayoría de las religiones occidentales defienden la existencia de una vida después de la muerte; las orientales hablan de un alivio gracias a un amplio ciclo de muertes y nacimientos. Pero ambas prometen un cielo o un satori, una reunión idílica del individuo con el universo, un retorno al Estadio 1. Cada nacimiento es una muerte, cuando la criatura abandona el mundo amniótico. Pero los devotos de la reencarnación sostienen que toda muerte es un nacimiento: una proposición que hubiese podido surgir de experiencias peritanáticas en las que la memoria perinatal fuese identificada como una reposición del nacimiento. («Oímos un golpe seco en el ataúd. Lo abrimos y resultó que Abdul no había muerto. Se había despertado tras una larga enfermedad que había arrojado sobre él su hechizo, y explicó una extraña historia acerca de haber nacido de nuevo».)
¿Acaso la fascinación occidental por el castigo y la redención no podría ser un intento de dar algún sentido al Estadio 2 perinatal? ¿No es mejor ser castigado por algo —por muy inverosímil que sea, como el pecado original— que serlo por nada? Y el Estadio 3 se parece mucho a lo que debía ser aquella experiencia común, compartida por todos los seres humanos, implantada en nuestras más tempranas memorias y recuperada en ocasiones, como en las epifanías religiosas, como en esas experiencias próximas a la muerte. Es tentador intentar explicar otros complejos motivos religiosos en esos términos. In útero no sabemos prácticamente nada. En el Estadio 2, el feto acumula experiencia sobre lo que muy bien puede llamarse posteriormente el mal (y entonces es empujado a abandonar el útero). Es fascinantemente parecido a comer la fruta del conocimiento del bien y el mal y luego ser «expulsado» del Edén. En la famosa pintura de Miguel Ángel que se encuentra en la bóveda de la Capilla Sixtina, ¿es el dedo de Dios el dedo de un obstetra? ¿Por qué el bautismo, especialmente el antiguo bautismo por inmersión total, se considera generalmente como un nuevo y simbólico nacimiento? ¿Es el agua sagrada una metáfora del líquido amniótico? ¿No es acaso todo el concepto del bautismo y la experiencia de «volver a nacer» un reconocimiento explícito de la relación entre el nacimiento y la religiosidad mística?
Si estudiamos las religiones, que se cuentan por miles en el planeta Tierra, quedaremos impresionados por su enorme diversidad. Y comprobaremos con estupor que algunas de ellas son solemnes tonterías. En los detalles doctrinales, es muy raro el acuerdo. Pero muchos buenos y grandes hombres y mujeres han afirmado que tras las aparentes divergencias existe una unidad fundamental e importante; debajo de las idioteces doctrinales existe una verdad básica y esencial. Hay dos tipos muy distintos de actitudes ante los principios religiosos. Por un lado están los creyentes —a menudo crédulos— que aceptan a pies juntillas una religión recibida, aun cuando pueda tener inconsistencias internas o estar en grave contradicción con lo que sabemos acerca del mundo externo y de nosotros mismos. Por otro lado están los escépticos estrictos, quienes consideran que todo este sistema es un fárrago de tonterías propias de débiles mentales. Algunos de los que se consideran sobrios racionalistas se resisten a considerar incluso el enorme volumen de experiencias religiosas registradas. Estos conocimientos místicos deben significar algo, pero ¿qué? En conjunto, los seres humanos son inteligentes y creativos, capaces de desentrañar misterios. Si las religiones son fundamentalmente estúpidas, ¿por qué tanta gente cree en ellas?
A lo largo de la historia del hombre las religiones burocráticas se han aliado con las autoridades seglares, y normalmente la tarea de inculcar la fe ha reportado beneficios a los gobernantes de turno. En la India, cuando los brahmanes desearon mantener en la esclavitud a los «intocables», propusieron una justificación divina. Argumentos del mismo tipo fueron utilizados por blancos que se hacían llamar cristianos para justificar la esclavitud de los negros en la época previa a la guerra civil en el Sur de Norteamérica. Los antiguos hebreos citaban las directrices y el estímulo de Dios para explicar el pillaje y el asesinato al azar que en algunas ocasiones cometieron sobre pueblos inocentes. En la Edad Media, la Iglesia mantenía viva la esperanza de una vida gloriosa después de la muerte entre aquellos que exigían satisfacción por su situación mísera y baja. Los ejemplos pueden multiplicarse hasta el infinito, hasta incluir a casi todas las religiones del mundo. Puede entenderse fácilmente por qué la oligarquía ha favorecido la religión cuando, como ocurre a menudo, la religión justifica la opresión (como hizo Platón, un decidido defensor de la quema de libros, en La República). Pero, ¿por qué los oprimidos se apuntan igualmente a esas doctrinas teocráticas?
Me parece que la aceptación general de las ideas religiosas sólo puede explicarse pensando que hay algo en ellas que sintoniza con un cierto conocimiento nuestro, algo profundo y melancólico, algo que todos consideramos central para nuestro ser. Mi propuesta es que ese miedo común es el nacimiento. La religión es fundamentalmente mística: los dioses son inescrutables. Los principios religiosos son atrayentes y poco firmes porque, en mi opinión, las percepciones borrosas y las premoniciones vagas son lo más que pueden alcanzar los recién nacidos. Considero que el núcleo místico de la experiencia religiosa no es ni verdadero al pie de la letra, ni perniciosamente equivocado. Es más bien un intento atrevido y defectuoso de tomar contacto con la experiencia más temprana y profunda de nuestras vidas. La doctrina religiosa es difusa en lo fundamental, ya que ninguna persona en el momento de su nacimiento posee la necesaria capacidad para fijar ideas y volverlas a contar para dar una versión coherente del acontecimiento. Todas las religiones que se han mantenido han debido poseer en sus núcleos algo que entrase en resonancia, no explícita y quizá incluso inconsciente, con la experiencia perinatal. Acaso cuando se desvelen las influencias seculares aparecerá que las religiones que más éxito tienen son aquellas que mejor logran esa resonancia.
Las creencias religiosas han resistido con vigor cualquier intento de explicación racional. Voltaire afirmaba que, de no existir Dios, el hombre se vería obligado a inventarlo; y fue denostado por esa afirmación. Freud propuso que un Dios paternalista es en parte nuestra proyección como adultos de nuestras percepciones natales hacia nuestros padres; a su libro sobre la religión le dio el titulo de El porvenir de una ilusión. No fue tan desdeñado como podríamos pensar por sus opiniones, pero tal vez sólo porque ya había demostrado su capacidad al sobrevivir cuando fue desacreditado por introducir ideas tan escandalosas como la sexualidad infantil.
¿Por qué es tan poderosa en la religión la constante oposición a un discurso racional y al argumento razonado? Creo que se debe, en parte, a que nuestras experiencias perinatales habituales son reales, aunque se resisten a un recuerdo preciso. Los seres humanos, y nuestros antepasados y parientes colaterales, como los hombres de Neanderthal, posiblemente sean los primeros organismos de este planeta que han tenido clara conciencia de la inevitabilidad de nuestro propio final. Moriremos, y tenemos miedo de la muerte. Este miedo es de ámbito mundial y transcultural; posiblemente tenga un considerable valor de supervivencia. Los que desean posponer o evitar la muerte pueden lograrlo mejorando el mundo, reduciendo sus peligros, haciendo hijos que vivan una vez estemos muertos, y creando grandes obras por las que ser recordados. Los que proponen un discurso racional y escéptico sobre temas religiosos aparecen como los contestatarios de la tradicional solución al miedo humano ante la muerte, la hipótesis de que el alma vive tras el fallecimiento del cuerpo. Como la mayoría de nosotros sentimos fuertemente el deseo de no morir, no hacen que nos sintamos cómodos quienes sugieren que la muerte es el final de todo y que la personalidad y el alma de cada uno de nosotros no ha de sobrevivir. Pero la hipótesis del alma y la de Dios son separables; de hecho, existen culturas en las que puede encontrarse una y no la otra. En cualquier caso, no haremos avanzar la causa humana si nos negamos a considerar las ideas que nos inspiran miedo.
No todos los que se plantean preguntas sobre la hipótesis de Dios y la hipótesis del alma son ateos. Un ateo es aquel que tiene la seguridad de que Dios no existe, alguien que dispone de pruebas convincentes en contra de la existencia de Dios. Yo no conozco esas pruebas convincentes. Dado que Dios puede relegarse a tiempos y lugares remotos y a las ultimas causas, tendríamos que saber mucho más acerca del universo de lo que hoy sabemos para estar seguros de que no existe ese Dios. Estar seguros de la existencia de Dios, y estar seguros de la inexistencia de Dios me parecen los extremos definitivos de un tema tan repleto de dudas e incertidumbres, que inspira poca confianza pensar en nada definitivo. Podrán admitirse muchas posiciones intermedias y, teniendo en cuenta la enorme carga emocional que pesa sobre el tema, la herramienta esencial para ir cubriendo nuestra ignorancia colectiva sobre la existencia de Dios es una mente abierta, valiente e indagadora.
Cuando doy conferencias sobre ciencia popular o pseudociencia (como las que menciono en los capítulos 5 al 8 de este libro) me preguntan a veces si no debería aplicarse el mismo tipo de crítica a la doctrina religiosa. Evidentemente, mi respuesta es sí. La libertad religiosa, uno de los pilares sobre los que se fundaron los Estados Unidos, es esencial para la libertad de investigación. Pero no conlleva ninguna inmunidad ante la critica o la reinterpretación para las propias religiones. Sólo aquellos que formulan preguntas pueden descubrir la verdad. No quiero volver a insistir en si estas relaciones entre la religión y la experiencia perinatal son correctas u originales. Muchas de ellas están, por lo menos, implícitas en las ideas de Stanislav Grof y de la escuelas de psiquiatría, especialmente las de Otto Rank, Sandor Ferenczi y Sigmund Freud. Pero vale la pena pensar un poco en ello.
Es obvio que existen muchas más cosas sobre el origen de la religión que las que sugieren estas sencillas ideas. No propongo que la teología sea simplemente fisiología. Pero, suponiendo que seamos efectivamente capaces de recordar nuestras experiencias perinatales, resultaría sorprendente que no afectasen a lo más profundo de nuestras actitudes ante el nacimiento y la muerte, el sexo y la infancia, los medios y los fines, la causalidad y Dios.
Y la cosmología. Los astrónomos estudiosos de la naturaleza del origen y el destino del universo llevan a cabo observaciones complicadas, describen el cosmos en términos de ecuaciones diferenciales y de cálculo tensorial, examinan el universo barriendo desde los rayos X a las ondas de radio, cuentan las galaxias y determinan sus movimientos y distancias… y cuando todo eso ya está, entonces hay que elegir entre tres puntos de vista distintos: una cosmología de Estado Estable, bienaventurado y quieto; un Universo Oscilante, en expansión y contracción, indefinidamente; y un universo en expansión por Big Bang, en el que el cosmos se crea en un acontecimiento violento, bañado en radiación («Hágase la luz») y luego crece y se enfría, evoluciona y se hace inactivo, como vimos en el capítulo anterior. Es llamativo que esas tres cosmologías se parezcan con una precisión torpe y casi embarazosa a las experiencias perinatales humanas de los Estadios 1, 2 y 3 más 4, respectivamente.
Resulta muy sencillo para los astrónomos modernos reírse de las cosmologías de otras culturas, por ejemplo, de la idea dogon de que el universo era incubado en un huevo cósmico (capitulo 6). Pero a la luz de las ideas que acabo de presentar, voy a ser mucho más prudente en mi actitud con respecto a las cosmologías populares: su antropocentrismo es tan sólo algo más sencillo de discernir que el nuestro. ¿No podrían ser una metáfora amniótica las intrigantes referencias babilonias y bíblicas a aguas “por encima y por debajo del firmamento”, que Tomás de Aquino se esforzó tan obstinadamente por reconciliar con la física aristotélica? ¿Somos incapaces de construir una cosmología que no sea una críptica descripción matemática de nuestros orígenes personales?
Las ecuaciones de la relatividad general de Einstein admiten una solución en la que el universo se expande. Pero Einstein, inexplicablemente, desestimó esa solución y optó por un cosmos absolutamente estático, incapaz de evolucionar. ¿Es demasiado obtuso preguntarse si ese descuido tenia orígenes perinatales y no matemáticos? Los físicos y astrónomos mantienen una probada resistencia a aceptar las cosmologías Big Bang en las que el universo se expande indefinidamente, aunque los teólogos occidentales convencionales están más o menos satisfechos con la perspectiva. ¿Puede entenderse ese debate, basado casi con toda certeza en predisposiciones psicológicas, en términos «grofianos»?
No sé hasta qué punto se parecen las experiencias perinatales personales y los modelos cosmológicos particulares. Supongo que es excesivo esperar que los inventores de la hipótesis del Estado Estable hayan nacido todos por cesárea. Pero las analogías son muchas y la posible conexión entre la psiquiatría y la cosmología parece ser muy real. ¿Puede ocurrir que cualquier forma posible de origen y evolución del universo corresponda a una experiencia perinatal humana? ¿Somos criaturas tan limitadas que nos vemos incapaces de construir una cosmología que difiera sustancialmente de alguno de los estadios perinatales? ¿Está nuestra capacidad por conocer el universo encenagada y atascada sin esperanza en las experiencias del nacimiento y la infancia? ¿Estamos predestinados a recapitular nuestros orígenes al pretender comprender el universo? ¿O acaso las observaciones que vamos realizando nos obligaran gradualmente a acomodamos y a comprender ese amplio y temible universo en el que flotamos, perdidos y valientes, siempre indagando?
Es común que las religiones del mundo atribuyan a la Tierra el carácter de nuestra madre y al cielo el de nuestro padre. Así es con Urano y Gea en la mitología griega, y también entre los nativos americanos, los africanos, los polinesios y, de hecho, entre la mayoría de los pueblos del planeta. Sin embargo, el punto culminante de la experiencia perinatal es el de que dejamos a nuestras madres. Lo hacemos primero en el parto y luego cuando nos establecemos en el mundo por nuestra propia cuenta. Por muy penosos que sean esos abandonos, resultan esenciales para la continuidad de la especie humana. ¿Puede tener algo que ver ese hecho con la atracción casi mística que ejercen los vuelos espaciales, por lo menos en muchos de nosotros? ¿No se trata acaso de un abandono de la Madre Tierra, el mundo de nuestros orígenes, para ir en busca de fortuna entre las estrellas? Esa es precisamente la metáfora visual final de la película 2001: Odisea del espacio. Konstantin Tsiolkovsky era un maestro de escuela ruso que formuló muchos de los pasos teóricos que se han dado desde entonces en el desarrollo de la propulsión por cohetes y de los vuelos espaciales. Tsiolkovsky escribió: «La Tierra es la cuna de la humanidad. Pero uno no vive para siempre en la cuna».
Estamos abocados irremediablemente, en mi opinión, a recorrer un camino que nos lleva a las estrellas (a menos que, en una monstruosa capitulación ante la estupidez y la codicia, nos autodestruyamos primero). Y allí, en las profundidades del espacio, parece muy probable que, antes o después, encontremos otros seres inteligentes. Algunos de ellos estarán menos adelantados que nosotros; otros, posiblemente la mayoría, lo estarán más. Me pregunto si todos esos seres espaciales tendrán nacimientos dolorosos. Los seres más avanzados tendrán aptitudes muy superiores a nuestra capacidad de comprensión. En un sentido muy real, nos parecerán algún tipo de dios. La especie humana tendrá que esforzarse mucho para crecer. Quizá nuestros descendientes en aquellos tiempos remotos volverán hacia atrás sus ojos, hacia el largo y errante viaje que recorriera la raza humana desde sus orígenes vagamente recordados en el lejano planeta Tierra, y recopilarán nuestras historias personales y colectivas, nuestro idilio con la ciencia y la religión, con claridad, comprensión y amor.

por Carl Sagan

Agujeros Negros: Utopía y Realidad

por Jorge Zanelli

Cuando se habla de utopía se piensa en una idea quimérica, en un paraíso idílico, en un sueño ideal declaradamente imposible de sociedad perfecta. Yo quisiera reivindicar, junto con el carácter de elaboración imaginaria de la utopía, dos cosas más. La primera es que, a veces, este sueño imposible se transforma en realidad. La segunda es el carácter terrorífico o apocalíptico que hay en las utopías desde la de Thomas More, hasta la de George Orwell, pasando por las de Jonathan Swift, Aldous Huxley y Herbert George Wells. En todas estas utopías atroces hay una crítica social y un llamado a la acción.
Lo que presento a continuación no es una utopía social sino la historia de una utopía científica. Aunque se trata de un ejemplo sacado de la física, también se puede reconocer en él un llamado a la acción. No para salvarnos de nuestra propia autodestrucción (para eso no se necesita recurrir a ejemplos tan descabellados) sino para darle espacio a la imaginación y a respetar las ideas que de ella surgen, sin importar lo peregrinas que parezcan. Es más, al parecer las ideas que más lejos llegan son las que parecen más locas a primera vista, aún en la ciencia.

La invención y el descubrimiento

Pero, ¿cómo es esto de inventar utopías en ciencia? A uno le enseñan que los científicos observan, descubren, y deducen proposiciones para nuevas observaciones y descubrimientos…
La realidad, sin embargo, al parecer no es tan simple. El sistema heliocéntrico de Copérnico, la ley de inercia, los microbios, las moléculas, los átomos, el ADN, los quarks, el big bang… ¿fueron resultados de la imaginación o de escarbar en las faldas de Mater Natura?
Quién sabe. Lo que sí es claro es que, al igual que en el descubrimiento de América, en los descubrimientos científicos hay una gran dosis de inspiración creativa que está al comienzo de cualquier avance científico: es aquel “eureka” que sigue resonando desde Arquímedes hasta nuestros días.
Primero está la visión febril de la utopía en la mente alucinada de un investigador desesperado. A veces, la alucinación logra contagiar a otros tan locos o desesperados como el primero y viene la búsqueda frenética e irracional de la quimera. En rarísimos casos la empresa tiene éxito y junto con la gloria, surge la teoría racional que da sustento a lo increíble: la Tierra es redonda y no podría ser de otra forma. Pero eso todo el mundo lo sabe (¡si hasta hay mapas que lo demuestran!).
La gracia está en imaginarse la Tierra redonda antes de que existieran los mapas que ahora conocemos, y en creer tanto en esa idea loca al punto de apostar la vida en una empresa basada en ella.
Los científicos son a veces inspirados soñadores de utopías; son los que imaginan mapas antes de que existan, si es que llegan a existir alguna vez. Otras veces se trata de aventureros ambiciosos y desaforados, arrastrados por una pasión en que se mezclan una curiosidad enfermiza, la embriaguez de sueños gloriosos y el vértigo de llegar primero (2).

Utopía pasión y muerte

Así, la ciencia se nutre de utopías fantásticas y disparatadas; se mueve con la audacia de los exploradores apasionados y ambiciosos. Pero luego es transformada en pieza de museo por esos coleccionistas de trofeos que escriben manuales y es finalmente estrangulada a diario en miles de salas de clases, por legiones de funcionarios encargados por el Estado de pasar materias y tomar pruebas.
Es precisamente por esto último que considero digna del mayor aplauso esta idea del Ministerio de Educación de reivindicar el legítimo derecho a soñar, condición necesaria para crear y crecer. Es un enorme privilegio y una gran oportunidad la que se me brinda al invitárseme a conversar sobre la(s) utopía(s) desde la perspectiva de un investigador.
Lo que sigue es un ejemplo de cómo una idea loca, salida de una mente brillante hace casi doscientos años, se pudo transformar en un objeto terriblemente real, a fuerza de tanto creer en ella.

1. La manzana

Cuenta la leyenda que un día estaba sentado un inglés a la sombra de un árbol cuando vio caer cerca de él una manzana de la variedad Newton. Dicen que este incidente trivial lo llevó a preguntarse por qué los cuerpos pesados caen a la Tierra y para entender esto inventó la fuerza de gravedad que supuestamente nos mantiene a todos pegados al suelo, incluso a quienes viven al otro lado del planeta. Se hizo tan famoso este inglés, que llegó a ser presidente de la Royal Society de Londres y curador de la Real Casa de Moneda del Imperio.
Muy bien: los cuerpos caen, por la fuerza que inventó (¿o descubrió?) Mister Newton. ¿Y por qué la Luna no? Según este mismo señor, no es que la Luna no caiga. Está cayendo tanto como una piedra que lanzamos y que describe un arco antes de chocar con el suelo. Lo que ocurre es que el arco de la trayectoria lunar es muy grande y se pasa de largo. Dicho de otro modo, la Tierra es muy pequeña para el tamaño de la órbita lunar.
Para ilustrar esto, Mister Newton inventó el siguiente esquema en que muestra la trayectoria de una piedra lanzada desde la punta de un cerro V y que cae en el punto D. Lanzada con más velocidad, la piedra caería en E, o en F, o en G… o en ninguna parte, quedándose en órbita. Como la Luna.
Ahora bien, si en lugar de dejar caer un cuerpo, uno lo dispara hacia arriba, éste llega a una altura máxima y luego vuelve al suelo. (Esto es algo que nuestro paso por la escuela no consiguió borrarnos del disco duro). El mismo Mister Newton observó que la altura máxima que alcanza este proyectil depende directamente de la velocidad con la que lo lanzamos: mientras más fuerte, más alto.
Lo notable es que la altura depende sólo de la velocidad del disparo, no de su peso. Además, hay una velocidad más allá de la cual el proyectil no regresa nunca más:
Velocidad de escape desde la Tierra = 11 Km/seg.
Si hiciéramos el experimento en la Luna u otro planeta, esta “velocidad de escape” sería mayor o menor, dependiendo de cuán fuerte sea la gravedad en su superficie. O sea, dependiendo de cuánta materia contenga el planeta.

2. La estrella negra

A partir de lo anterior, hacia fines del siglo XVIII, un profesor de Cambridge llamado John Mitchell y un francés bueno para la especulación formal, el marqués Pierre Simon de Laplace, pensaron lo siguiente: si para que un proyectil logre escapar de la atracción de la Tierra hay que lanzarlo a una velocidad mayor que 11 Km/seg, ¿qué pasaría en un planeta donde la gravitación fuese tan grande que para que un proyectil consiguiera escaparse tuviera que ser lanzado con velocidad mayor que la de la luz? De un planeta así ¡ni siquiera la luz lograría escapar!
Laplace incluso hizo el cálculo: <> (3).
La idea es sin duda fascinante y terrorífica, aún para alguien que no tiene forma de comprobar experimentalmente esta afirmación: sería posible la existencia de objetos invisibles tremendamente pesados cuya presencia sólo sería detectable si nos acercáramos tanto a ellos como para correr el riesgo de ser atrapados por su tremenda atracción gravitacional. Había nacido un engendro diabólico de la imaginación de un genio demente: un agujero negro.
Sin embargo, los contemporáneos de Mitchell y Laplace no se contagiaron fácilmente con su pesadilla. El mismo Laplace, que había incluido este párrafo en las primeras dos ediciones de su Exposition du système du monde, lo omitió de las ediciones siguientes, tal vez por considerarlo demasiado audaz.

3. Nueva explicación para la manzana

No tanto por chiflada como por irrelevante, la idea de la estrella negra fue olvidada por más de cien años. ¿Qué importa si hay planetas que no podemos ver y que de existir deben estar tan lejos de nosotros que en nada nos afectan? Faltaba una razón más de peso para creer que una cosa tan exótica pudiese existir en realidad.
Pero entre tanto, a comienzos de este siglo, un judío alemán quitado de bulla nos cambió radicalmente la forma de concebir la gravitación. En 1915, Albert Einstein propuso que la gravitación no se debe a unos tentáculos invisibles y misteriosos que poseen los planetas con los que agarran a las cosas en su entorno. Según él, lo que ocurre es que el espacio alrededor de los cuerpos pesados se curva, deformando por lo tanto las trayectorias de los cuerpos que se mueven en su cercanía.
Así, la manzana o la Luna se mueven como lo hacen no porque estén sometidas a la fuerza de atracción de la Tierra, sino porque no tienen otra alternativa: el espacio en que se mueven es curvo y no pueden moverse de otra forma sin salirse de él.

4. Es posible, entonces es

Apenas dos años después de la publicación de la Relatividad General y unos meses antes de morir en el frente, un alemán llamado Karl Schwarzchild demostró que, según la teoría de Einstein, era posible que hubiese regiones de tal curvatura que atraparían cualquier cosa que cayese dentro de un cierto radio. De estas zonas, ciertamente, ni siquiera la luz podría escapar. Pero, ¿cómo podrían producirse estas gargantas del espacio-tiempo?
En 1939, dos físicos norteamericanos, Robert Oppenheimer –quien más tarde se hiciera famoso por dirigir el proyecto Manhattan– y H. Snyder dieron la respuesta. Ellos demostraron que al agotar su combustible nuclear, una estrella como nuestro sol se contraería, convirtiéndose en un cuerpo pequeñísimo y de una enorme densidad. Si la masa de la estrella inicial es suficientemente grande, este cuerpo sería incapaz de resistir su propio peso y se haría cada vez más pequeño y más denso hasta desaparecer, dejando como única huella de su presencia una garganta de Schwarzschild.
En la formulación de Einstein, lo que ocurre es que el espacio-tiempo se ha deformado tanto que se rompe: aparece una singularidad. La superficie espaciotemporal se estira hasta producir una garganta en un proceso irreversible. Hace casi veinticinco años, el físico norteamericano John Archibald Wheeler bautizó a este monstruo voraz, cuyo apetito aumenta a medida que devora materia,”agujero negro”.

5. ¿Y qué importa?

¿Y qué nos dice todo esto a nosotros hoy?
En los últimos años se han detectado fuentes de radiación muy intensa en el centro de muchas galaxias, incluida la nuestra. Estos objetos no son estrellas normales y podrían corresponder a la emisión de altísima energía que produciría el gas de una estrella al ser tragado por un agujero negro.
De modo que al parecer, en el núcleo de cada galaxia habría un agujero negro.
La cosmología moderna nos informa que la evolución de nuestro universo será posiblemente una expansión hasta un tamaño máximo para luego recolapsar en un “Big Crunch” de aquí a unos 200.000 millones de años.
También puede ser que el universo se expanda indefinidamente y terminemos en un universo frío, oscuro e inanimado, en que todas las estrellas –-entre ellas nuestro sol– se habrán apagado.
Existe una tercera posibilidad más a corto plazo: que el agujero negro que probablemente existe en el centro de nuestra galaxia crezca hasta devorarse todo a su alrededor, incluyendo nuestro querido sistema solar.
En efecto, hace algunos meses el New York Times publicó en su primera plana la primera fotografía de lo que a todas luces es un agujero negro devorándose a su galaxia.
Se trata de un monstruo unas 10 millones de veces más pesado que el Sol en el centro de la galaxia NGC 4261, rodeado de una masa de unos 300 años luz de diámetro compuesta de gases y estrellas en proceso de ser devorados.

6. Epílogo

El agujero negro ha pasado de ser una idea loca hace doscientos años, a uno de los objetos más fascinantes de la física actual. Es tremendamente simple y a la vez posiblemente encierre la clave del origen del universo y de la utópica unificación de las dos grandes teorías de nuestro siglo: la Relatividad General y la Mecánica Cuántica.
Tal vez nuestro planeta termine siendo seccionado por un agujero negro de aquí a unos cuantos miles de millones de años. Esto nos muestra al mismo tiempo lo ridículo de nuestro apego a las cosas materiales que terminarán en las entrañas del monstruo, y lo precioso de otras que por no tener peso –como las utopías–, tienen mayores probabilidades de salvarse.

Notas

Mis disculpas a quienes vinieron a oír hablar del cosmos, los viajes y la realidad virtual. También le pido disculpas a quienes encontrarán mí ponencia demasiado didáctica o banal. Mi única excusa es que yo no soy un intelectual.

(2) Pocas veces los investigadores llegan a arriesgar la vida en un experimento, pero a menudo se arriesgan a algo que es igualmente doloroso para cualquiera, y especialmente para la vanidad científica: quedar en ridículo.

(3) Pierre Simon de Laplace, 1796.

1993, Jorge Zanelli

El monstruo Subatómico

Por Isaac Asimov

[…] Electricidad y magnetismo están íntimamente relacionados; en realidad, resultan inseparables. Todo lo que posee un campo eléctrico tiene un campo magnético, y viceversa. De hecho, los científicos normalmente hablan de un campo electromagnético, más que de un campo eléctrico o magnético por separado. Hablan de la luz como de una radiación electromagnética, y de la interacción electromagnética como de una de las cuatro interacciones fundamentales de la Naturaleza.

Naturalmente, pues, no resulta sorprendente que la electricidad v el magnetismo, cuando se consideran por separado, muestren numerosas semejanzas. Así, un imán tiene dos polos, que presentan extremos opuestos, por así decirlo, de propiedades magnéticas. Les llamados «polo norte» y «polo sur». Existe una atracción entre los polos norte y sur, y una repulsión entre dos polos norte o entre dos polos sur.

De forma semejante, un sistema eléctrico tiene dos extremos opuestos, que llamamos «carga positiva» y «carga negativa». Existe una atracción entre una carga positiva y otra negativa, y una repulsión entre dos cargas positivas o entre dos cargas negativas. En cada caso, la atracción y la repulsión son de intensidades iguales, y tanto la atracción como la repulsión se hallan en proporción inversa al cuadrado de la distancia.

Sin embargo, queda una enorme diferencia de una clase.

Suponga que tiene una varilla de material aislante en la que, de una forma u otra, ha producido en un extremo una carga negativa y, en la otra, una carga positiva. Así, pues, si se rompe la varilla por la mitad, una de esas mitades tiene una carga completamente negativa, y la otra mitad es enteramente positiva. Y lo que es más, existen partículas subatómicas, como los electrones, que llevan sólo una carga negativa y otros, como los protones, que llevan sólo una carga positiva.

No obstante, supongamos que tiene un imán largo, con un polo norte en un extremo y un polo sur en el otro. Si lo rompemos por la mitad, ¿existe una mitad enteramente polo norte y otra mitad enteramente polo sur?

¡No! Si se parte un imán en dos, la mitad del polo norte, al instante, desarrolla un polo sur en donde se ha roto, mientras que la mitad del polo sur desarrolla en el punto de ruptura un polo norte. Es imposible hacer nada para que cualquier objeto posea sólo un polo magnético; ambos están siempre presentes. Incluso las partículas subatómicas que poseen una carga eléctrica y, por ende, un campo magnético asociado, poseen un polo norte y un polo sur.
Tampoco parece que existan partículas subatómicas concretas que lleven solo polos norte o sólo polos sur, aunque hay incontables partículas subatómicas que llevan sólo cargas positivas o sólo cargas negativas. No parece existir algo, en otras palabras, como un «monopolo magnético».

Hacia 1870, cuando el físico escocés James Clerk Maxwell elaboró por primera vez las relaciones matemáticas que describían el campo electromagnético como un fenómeno unificado, presentó el mundo con cuatro concisas ecuaciones que parecían totalmente suficientes para el propósito para el que habían sido ideadas. En caso de haber existido monopolos magnéticos, las cuatro ecuaciones hubieran sido bellamente simétricas, con lo que electricidad y magnetismo habrían representado una especie de imagen de espejo uno del otro. Sin embargo, Maxwell dio por supuesto que los polos magnéticos siempre existían por parejas, mientras que las cargas eléctricas no, y esto, forzosamente, introducía una asimetría.

A los científicos les disgustan las asimetrías, puesto que ofenden el sentido estético e interfieren en la simplicidad (el desiderátum de la ciencia perfecta), así que ha existido siempre una constante sensación de que el monopolo debería existir; de que su no existencia representa un defecto en el diseño cósmico.
Después de que fuese descubierto el electrón, se llegó a saber finalmente que la carga eléctrica está cuantificada; es decir, que todas las cargas eléctricas son múltiplos exactos de algún valor fundamental más pequeño.

Así, todos los electrones poseen una idéntica carga negativa y todos los protones una carga positiva idéntica, y las dos clases de carga son exactamente iguales la una a la otra en tamaño. Todos los otros objetos con carga conocidos tienen una carga eléctrica que es exactamente igual a la del electrón, o a la del protón, o es un múltiplo exacto de una u otra.

Se cree que los quarks tienen cargas iguales a 1/3 y 2/3 de la del electrón o protón, pero los quarks no han sido nunca aislados; e incluso aunque lo fuesen, esto meramente representaría que el valor fundamental más pequeño es un tercio de lo que se creía que era. El principio de la cuantificación permanecería.

¿Por qué la carga eléctrica debe cuantificarse? ¿Por qué no podría existir en un valor desigual, exactamente como lo hace la masa? A fin de cuentas, la masa de un protón es un múltiplo enteramente desigual de la masa de un electrón. ¿Por qué no habría de ocurrir lo mismo con la carga?

En 1931, el físico inglés Paul A. M. Dirac planteó la cuestión de una forma matemática, y llegó a la decisión de que esta cuantificación de la carga sería una necesidad lógica si existiesen los monopolos magnéticos. En realidad, aun cuando hubiese sólo un monopolo en algún lugar del Universo, la cuantificación de la carga sería una necesidad.

Resulta tentador argumentar a la inversa, naturalmente: puesto que la carga eléctrica está cuantificada, los monopolos magnéticos deben existir en algún lugar. Parecía acertado buscarlos.
Pero ¿dónde y cómo pueden encontrarse, si es que existen? Los físicos no lo sabían y, lo que era peor, no estaban seguros de cuáles podrían ser las propiedades de esos monopolos. Parecía natural suponer que eran partículas con bastante masa, porque de no serlo no serían muy comunes y no podrían producirse con facilidad en el laboratorio; y esto explicaría el por qué nadie había tropezado con ellos de manera accidental.

No existió ninguna guía teórica hasta los años setenta, cuando había gente elaborando algunas grandes teorías unificadas con el propósito de combinar las interacciones débiles, fuertes y electromagnéticas, todo ello bajo una simple serie de ecuaciones.

En 1974, un físico neerlandés, Gerard’t Hooft, y un físico soviético, Alexandr Poliakov, mostraron, de forma independiente, que de las grandes teorías unificadas podía deducirse que los monopolos magnéticos debían existir, y que no tienen meramente mucha masa, sino que son unos monstruos.

Aunque un monopolo sería aún más pequeño que un protón, envuelta en su pequeñez podría haber una masa de entre diez trillones y diez cuatrillones de veces la del protón. Si se encontrase en el extremo superior de este ámbito, un monopolo tendría un equivalente en energía de 10.000.000.000.000.000.000.000.000.000 electrón-voltios (10E28 eV).

¿Y qué cantidad sería eso en masa? Al parecer, un monopolo magnético podría tener una masa de hasta 1,8E-9 gramos. Esto equivale a la masa de 20 espermatozoides humanos, todos metidos en una sola partícula subatómica.

¿Cómo pueden formarse estos monstruos subatómicos? No existe modo alguno de que los seres humanos puedan encerrar tanta energía en un volumen subatómico de espacio, ni en la actualidad ni en un futuro previsible. En realidad, no existe ningún proceso natural que tenga lugar en alguna parte del Universo ahora (por lo que sabemos) que pudiera crear una partícula con una masa tan monstruosa.
La única posibilidad es volver al Big Bang, o gran explosión inicial, cuando las temperaturas eran increíblemente elevadas y las energías estaban increíblemente concentradas. Se calcula que los monopolos debieron formarse sólo 1E-34 segundos después del Big Bang. Después, el Universo habría sido demasiado frío y demasiado grande para este propósito.

Probablemente, se formaron los monopolos norte y sur, quizás en cantidades enormes. Probablemente, un gran número de ellos se aniquilaron los unos a los otros, pero cierto número debió de sobrevivir, simplemente porque, por pura casualidad, no llegaron a encontrar otros del tipo opuesto. Después de que los monopolos sobrevivieran cierto tiempo, la firme expansión del Universo hizo cada vez menos probable que se produjesen colisiones, y esto aseguró su ulterior supervivencia. Por lo tanto, hoy existe cierto número de ellos flotando en torno del Universo.

¿Cuántos? No demasiados, pues por encima de cierto número el efecto gravitatorio de esas monstruosas partículas hubiera asegurado que el Universo, antes de ahora, alcanzase un tamaño máximo y se derrumbase de nuevo por su propio impulso gravitatorio. En otras palabras, podemos calcular una densidad máxima de monopolos en el Universo simplemente reconociendo el hecho de que nosotros mismos existimos.
Sin embargo, aunque en escaso número, un monopolo debería, de vez en cuando, moverse en las proximidades de un aparato de grabación. ¿Cómo podría detectarse?

En un principio, los científicos, suponían que los monopolos se movían a casi la velocidad de la luz, como lo hacen las partículas de rayos cósmicos; y corno las partículas de rayos cósmicos, los monopolos deberían estrellarse contra otras partículas en su camino y producir una lluvia de radiación secundaria que se podría detectar con facilidad, y a partir de la cual el mismo monopolo se podría identificar.

Ahora que se cree que el monopolo es de una masa monstruosa, las cosas han cambiado. Estos enormes monopolos no podrían acumular suficiente energía para moverse muy rápidamente, y se estima que deben de viajar a una velocidad de un par de centenares de kilómetros por segundo; es decir, menos de una milésima parte de la velocidad de la luz. A tan bajas velocidades, los monopolos simplemente se deslizarían al lado y a través de la materia, sin dejar ninguna señal de la que hablar. Es posible que esto explique el que hasta aquí no se hubieran descubierto los monopolos.
Bueno, entonces, ¿qué debe hacerse?

Un físico de la Universidad de Stanford, Blas Cabrera, tuvo una idea. Un imán que impulse energía a través de una bobina de cable enviará una oleada de corriente eléctrica a través de ese cable. (Esto se conoce desde hace un siglo y medio.) ¿Por qué no instalar una bobina así y esperar? Tal vez pasaría un monopolo magnético a través de la bobina y señalaría su paso mediante una corriente eléctrica. Cabrera calculó las posibilidades de que esto sucediera basándose en la densidad más alta del monopolo dado el hecho de que el Universo existe, y decidió que semejante eventualidad podía ocurrir como promedio, cada seis meses.

Por lo tanto, Cabrera instaló una bobina de metal de niobio, y la mantuvo a una temperatura cercana al cero absoluto. En esas condiciones, el niobio es superconductor y posee una resistencia cero ante una corriente eléctrica. Esto significa que si de alguna forma comienza a fluir por el mismo una corriente, esa corriente fluirá de manera indefinida. Un monopolo que pase a través de la bobina no dará lugar a una oleada instantánea de corriente, sino a una corriente continua.

Naturalmente, una corriente podría ser iniciada por cualquier viejo campo magnético que se encontrase cerca; el propio campo magnético de la Tierra, los que son establecidos por cualquiera de los mecanismos técnicos que le rodean, incluso por pedazos de metal que se estén moviendo porque se encuentran en el bolsillo de alguien.
Por tanto, Cabrera colocó el carrete dentro de un globo de plomo superconductor, el cual estaba dentro de un segundo globo de plomo superconductor. Los campos magnéticos ordinarios no traspasarían el plomo superconductor, pero un monopolo magnético sí lo haría.
Aguardó durante cuatro meses y no sucedió nada. El nivel de corriente, señalado en un rollo móvil de papel, permaneció durante todo ese tiempo cerca de cero. Esto en sí era bueno. Demostraba que había excluido con éxito los campos magnéticos al azar.
Luego, a la 1.53 de la tarde del 14 de febrero de 1982, se produjo un flujo repentino de electricidad, y en la cantidad exacta que cabría esperar si hubiese pasado a través de allí un monopolo magnético.

Cabrera comprobó todas las posibles eventualidades que podían haber iniciado la corriente sin la ayuda de un monopolo, y no pudo encontrar nada. El monopolo parecía la única alternativa posible.
Así pues, ¿se ha detectado el esquivo monopolo? En este caso, se trata de una notable proeza y de un fuerte apoyo a la gran teoría unificada.

Sin embargo, el problema es que no se repitió ese suceso único, y resulta difícil basar algo en un solo caso.

Asimismo. La estimación de Cabrera del número de monopolos que están flotando por ahí se basaba en el hecho de que el Universo se encuentra aún en expansión. Algunas personas creen que existe una restricción más fuerte derivada de la posibilidad de que los monopolos que flotan por la galaxia borren el campo magnético galáctico general. Puesto que el campo magnético galáctico aún existe (aunque sea muy débil), esto podría establecer un valor máximo de la densidad del monopolo aún mucho más bajo, tan bajo tal vez como 1/10.000 de la cifra de Cabrera.

Si eso fuese así, cabría esperar que pasase un monopolo a través de su carrete una vez cada 5.000 años como promedio. Y en este caso que hubiese pasado uno después de esperar sólo cuatro meses es pedir una suerte excesiva, y se hace difícil creer que se tratase de un monopolo.

Sólo se puede hacer una cosa, y los físicos lo están haciendo. Continúan sus investigaciones. Cabrera está construyendo una versión mayor y mejor de su mecanismo, lo cual incrementará en cincuenta veces sus posibilidades de hallar un monopolo. Otros físicos están ideando otras formas de abordar su descubrimiento.

En los próximos años, la búsqueda del monopolo aumentará enormemente en intensidad, porque hay mucho en juego. Su descubrimiento definitivo nos proporcionará una indicación de las propiedades del monstruo subatómico y de sus números. Y a partir de ello, podemos aprender cosas acerca del principio del Universo, por no hablar de su presente y de su futuro, algo que, en caso contrario, tal vez jamás averiguaríamos.

Y, naturalmente, hay un Premio Nobel que está esperando a alguien.

Fragmento tomado del libro de divulgación científica El Monstruo Subatómico: una exploración de los misterios del universo por Isaac Asimov. ©1993, Salvat Editores, S.A. Barcelona. España

¿Será nuestro Futuro como Star Trek o no?

Por Stephen Hawking

Fragmentos extraídos de “El universo en una cáscara de nuez”, Capítulo 6

[…] Star Trek muestra una sociedad muy avanzada respecto a la nuestra en ciencia, tecnología y organización política […]. En el tiempo que va desde ahora hasta entonces debe haber habido grandes cambios, pero se supone que, en el período mostrado en la serie, la ciencia, la tecnología y la organización de la sociedad han alcanzado un nivel próximo a la perfección.

Quiero cuestionar esta imagen y preguntarnos si la ciencia y la tecnología llegarán a alcanzar un estado final estacionario. En los diez mil años transcurridos desde la última glaciación, en ningún momento la especie humana se ha hallado en un estado de conocimiento constante y tecnología fija. Incluso ha habido algunos retrocesos, como en las edades oscuras posteriores a la caída del Imperio Romano, pero la población mundial, que constituye un indicador de nuestra capacidad tecnológica de conservar la vida y alimentarnos, ha aumentado incesantemente, con sólo unas pocas caídas como la debida a la Peste Negra.

[…] Otros indicadores del desarrollo tecnológico reciente son el consumo de electricidad y el número de artículos científicos publicados, que también muestran crecimiento exponencial, con tiempos de duplicación menores que cuarenta años. No hay indicios de que el desarrollo científico y tecnológico se vaya a frenar y a detenerse en el futuro próximo -ciertamente no en la época de Star Trek, que se supone que ocurre en un futuro no muy lejano-. Pero si el crecimiento de población y el consumo de electricidad siguen al ritmo actual, en el año 2600 la población mundial se estará tocando hombro con hombro, y el consumo de electricidad hará que la Tierra se ponga al rojo vivo […]

Si se pusieran en fila todos los nuevos libros publicados, nos deberíamos desplazar a ciento cincuenta kilómetros por hora para mantenernos al frente de la hilera. Naturalmente, en el año 2600 los nuevos trabajos científicos y artísticos tendrán formato electrónico, en vez de ser libros y revistas. Sin embargo, si continuara el crecimiento exponencial, se publicarían diez artículos por segundo en mi especialidad de física teórica, y no tendría tiempo de leerlos.

Claramente, el crecimiento exponencial actual no puede continuar indefinidamente. Por lo tanto, ¿qué va a ocurrir? Una posibilidad es que nos autodestruyamos completamente provocando algún desastre, como por ejemplo una guerra nuclear. Sería una triste ironía que el motivo por el cual no hemos sido contactados por extraterrestres fuera que cuando una civilización alcanza nuestro estadio de desarrollo deviene inestable y se autodestruye. Sin embargo, soy optimista. No creo que la especie humana haya llegado tan lejos sólo para eliminarse a sí misma cuando las cosas se están poniendo interesantes.

La visión de futuro presentada en Star Trek -es decir, que se alcanza un nivel avanzado pero esencialmente estático- puede llegar a ser verdad en lo que se refiere al conocimiento de las leyes básicas que rigen el universo. […] Podría haber una teoría última y la podríamos descubrir en un futuro no demasiado distante. Esta teoría última, si existe, determinaría si el sueño de Star Trek de viajar por los atajos de las deformaciones del universo podrá ser realizado. Según las ideas actuales, tendremos que explorar la galaxia de una manera lenta y aburrida, utilizando naves espaciales que viajan con velocidad menor que la de la luz, pero como todavía no tenemos una teoría unificada completa, no podemos desechar completamente los viajes por atajos del espacio-tiempo.

[…] Los sistemas más complicados que conocemos son, con mucho, nuestros propios cuerpos. La vida parece haberse originado en los océanos primitivos que recubrían la Tierra hace unos cuatro mil millones de años. No sabemos cómo se produjo este inicio. Podría ser que las colisiones aleatorias entre los átomos formaran macromoléculas capaces de autoreproducirse y juntarse para formar estructuras más complicadas. Lo que sabemos es que hace unos tres mil quinientos millones de años, la complicadísima molécula del ADN ya había emergido.

El ADN es la base de la vida en la Tierra. Tiene una estructura de doble hélice, como una escalera de caracol, descubierta por Francis Crick y James Watson en el laboratorio Cavendish de Cambridge en 1953. Los dos hilos de la doble hélice están unidos por pares de bases nitrogenadas, como los escalones de una escalera de caracol. Hay cuatro tipos de bases: citosina, guanina, timina y adenina. El orden en que las diferentes bases se presentan a lo largo de la escalera de caracol contiene la información genética que permite que la molécula de ADN reúna en torno a sí un organismo y se autoreproduzca. Cuando el ADN hace copias de sí mismo, se producen algunos errores ocasionales en el orden de los pares de bases a lo largo de la espiral. En la mayoría de los casos, estos errores de copia hacen que e! nuevo ADN sea incapaz o menos capaz de autoreproducirse, lo cual significa que estos errores genéticos, o mutaciones, están llamados a desaparecer. Pero en unos pocos casos, el error o mutación aumenta las posibilidades de supervivencia y reproducción del ADN. Tales cambios en la información genética serán favorecidos. Así es como la información contenida en la secuencia de las bases en los ácidos nucleicos evoluciona y aumenta gradualmente en complejidad.

Como la evolución biológica es básicamente un camino aleatorio en el espacio de todas las posibilidades genéticas, ha sido muy lenta. La complejidad, o número de bits de información codificada en el ADN, es aproximadamente igual al número de pares de bases contenidas en la molécula de este ácido nucleico. Durante los primeros dos mil millones de años, aproximadamente, la tasa de aumento de la complejidad debió haber sido del orden de un bit de información cada cien años. En los últimos pocos millones de años, la tasa de incremento de complejidad del ADN aumentó gradualmente hasta un bit por año. Pero hace seis mil u ocho mil años, hubo una novedad importantísima: se desarrolló el lenguaje escrito. Ello significó que la información podía ser transmitida de una generación a la siguiente sin tener que esperar el proceso lentísimo de mutaciones aleatorias y selección natural que la codifica en la secuencia del ADN. El grado de complejidad aumentó enormemente. La diferencia entre el ADN de los primates y de los humanos podría ser contenida en una novela sencilla, y la secuencia completa del ADN humano podría escribirse en una enciclopedia de treinta volúmenes.
Mayor importancia aún reviste el hecho de que la información de los libros puede ser actualizada rápidamente. La tasa actual con que el ADN humano está siendo actualizado por la evolución biológica es de un bit por año. Pero cada año se publican doscientos mil nuevos libros, que suponen una tasa de nueva información de aproximadamente un millón de bits por segundo. Naturalmente, la mayoría de esta información es basura pero aun así, si sólo un bit por millón resultara útil, ello supone todavía una rapidez cien mil veces mayor que la de la evolución biológica.

La transmisión de datos a través de medios externos, no biológicos, ha llevado a la especie humana a dominar el mundo y a tener una población exponencialrnente creciente. Pero ahora nos hallamos en el comienzo de una nueva era, en que podremos aumentar la complejidad de nuestro registro interno, el ADN, sin tener que esperar el lento proceso de la evolución biológica. En los últimos diez mil años no ha habido cambios importantes en el ADN humano, pero es probable que podamos rediseñarlo completamente en los próximos mil años. Naturalmente, mucha gente opina que la ingeniería genética con humanos debería ser prohibida, pero es dudoso que logremos impedirla. La ingeniería genética de plantas y animales será permitida por razones económicas, y tarde o temprano alguien lo intentará con humanos. A menos que tengamos un orden totalitario mundial, alguien, en algún lugar, diseñará seres humanos mejorados.
Claramente, la creación de seres humanos mejorados producirá grandes problemas sociales y políticos respecto a los humanos no mejorados. No es mi intención defender la ingeniería genética humana como un desarrollo deseable, sino solamente decir que es probable que ocurra tanto si queremos como si no. Este es el motivo por el que no creo en la ciencia ficción como Star Trek, donde la gente de dentro de cuatrocientos años es esencialmente igual a la de hoy. Creo que la especie humana, y su ADN, aumentarán rápidamente de complejidad. Deberíamos admitir esta posibilidad y considerar cómo reaccionar frente a ella.

En cierta manera, la especie humana necesita mejorar sus cualidades mentales y físicas si tiene que tratar con el mundo crecientemente complicado de su alrededor y estar a la altura de nuevos retos como los viajes espaciales. Los humanos también necesitan aumentar su complejidad si queremos que los seres biológicos se mantengan por delante de los electrónicos. En la actualidad, los ordenadores tienen la ventaja de la rapidez, pero aún no muestran señales de inteligencia. Ello no es sorprendente, ya que los ordenadores actuales son menos complicados que el cerebro de una lombriz de tierra, una especie no muy notable por sus dotes intelectuales.
Pero los ordenadores siguen lo que se llama ley de Moore: su velocidad y complejidad se duplican cada dieciocho meses. Es uno de los crecimientos exponenciales que claramente no pueden seguir indefinidamente. Sin embargo, probablemente continuará hasta que los ordenadores alcancen una complejidad semejante a la del cerebro humano. Algunos afirman que los ordenadores nunca mostrarán auténtica inteligencia, sea ésta lo que sea. Pero me parece que si moléculas químicas muy complicadas pueden funcionar en los cerebros y hacerlos inteligentes, entonces, circuitos electrónicos igualmente complicados pueden llegar a conseguir que los ordenadores actúen de manera inteligente. Y si llegan a ser inteligentes, presumiblemente podrán diseñar ordenadores que tengan incluso mayor complejidad e inteligencia.

Este aumento de complejidad biológica y electrónica ¿proseguirá indefinidamente, o existe algún límite natural? Del lado biológico, el límite de la inteligencia humana ha sido establecido hasta el presente por el tamaño del cerebro que puede pasar por el conducto materno. Como he visto el nacimiento de mis tres hijos, sé cuan difícil es que salga la cabeza. Pero espero que en el siglo que acabamos de iniciar conseguiremos desarrollar bebés en el exterior del cuerpo humano, de manera que esta limitación quedará eliminada. En última instancia, sin embargo, el crecimiento del tamaño del cerebro humano mediante la ingeniería genética topará con el problema de que los mensajeros químicos del cuerpo responsables de nuestra actividad mental son relativamente lentos. Ello significa que aumentos posteriores en la complejidad del cerebro se realizarán a expensas de su velocidad. Podemos ser muy rápidos o muy inteligentes, pero no ambas cosas a la vez. Aun así, creo que podemos llegar a ser mucho más inteligentes que la mayoría de personajes de Star Trek, aunque esto, en realidad, no sea muy difícil.

Los circuitos electrónicos presentan el mismo problema de compromiso entre complejidad y velocidad que el cerebro humano. En ellos, sin embargo, las señales son eléctricas en vez de químicas, y se propagan con la velocidad de la luz, que es mucho más elevada. Sin embargo, la velocidad de la luz ya es un límite práctico en el diseño de ordenadores más rápidos. Podemos mejorar la situación reduciendo el tamaño de los circuitos, pero en último término habrá un límite fijado por la naturaleza atómica de la materia. Aun así, todavía nos queda un buen trecho de camino por recorrer antes de llegar a esta barrera.

Otra manera de aumentar la complejidad de los circuitos electrónicos manteniendo su velocidad es copiar el funcionamiento del cerebro humano. Este no tiene una sola unidad central de procesamiento -CPU- que procese en serie todas las instrucciones, sino millones de procesadores que trabajan en paralelo simultáneamente. Este procesamiento masivo en paralelo será también el futuro de la inteligencia electrónica.

Suponiendo que no nos autodestruyamos en los próximos siglos, es probable que nos diseminemos primero por los planetas del sistema solar y a continuación por los de las estrellas próximas, pero no pasará como en Star Trek o Babylon 5, en que hay una nueva raza de seres casi humanos en casi cada sistema estelar. La especie humana ha tenido su forma actual sólo durante unos dos millones de años de los quince mil millones de años, aproximadamente, transcurridos desde la gran explosión inicial.

Por lo tanto, incluso si se llega a desarrollar vida en otros sistemas estelares, las posibilidades de encontrarla en un estadio reconociblemente humano son muy pequeñas. Es probable que cualquier vida extraterrestre que podamos hallar sea mucho más primitiva o mucho más avanzada. Si es más avanzada, ¿por qué no se ha diseminado por la galaxia y ha visitado la Tierra? Si hubieran venido extraterrestres, se habría notado: habría sido más como la película Independence Day que como E.T.

Así, ¿cómo nos explicamos la ausencia de visitantes extraterrestres? Podría ser que una especie avanzada conociera nuestra existencia pero nos estuviera dejando cocer en nuestra salsa primitiva. Sin embargo, es dudoso que fuera tan considerada hacia una forma inferior de vida: ¿nos preocupamos nosotros de cuántos insectos o gusanos aplastamos? Una explicación más razonable es que la probabilidad de que se desarrolle vida en otros planetas o de que la vida llegue a ser inteligente sea muy baja. Como afirmamos que somos inteligentes, quizás sin mucha base para ello, tendemos a ver la inteligencia como una consecuencia inevitable de la evolución. Sin embargo, podemos cuestionarnos esto, ya que no resulta claro que la inteligencia tenga mucho valor para la supervivencia. Las bacterias se las arreglan muy bien sin inteligencia, y nos sobrevivirán si nuestra llamada inteligencia nos lleva a exterminarnos en una guerra nuclear. Así, puede ser que cuando exploremos la galaxia encontremos vida primitiva, pero no es probable que hallemos seres como nosotros.
El futuro de la ciencia no será como la imagen reconfortante presentada en Star Trek. un universo poblado por muchas especies humanoides, con una ciencia y una tecnología avanzadas pero esencialmente estáticas. Creo, en cambio, que seguiremos nuestro propio camino, con un rápido desarrollo en complejidad biológica y electrónica. En el presente siglo, que es hasta donde podemos aventurar predicciones con más o menos fiabilidad, no ocurrirán muchas de estas cosas. Pero hacia el fin de milenio, si llegamos a él, las diferencias con Star Trek serán fundamentales.

Stephen Hawking.

eproducido en TauZero sin autorización del propietario del copyright, únicamente con fines divulgativos.