AlejandroEn el año 332 a.C., el pupilo de Aristóteles entró triunfante en Egipto. El orgulloso Imperio Persa estaba de rodillas y pronto Alejandro y sus ejércitos marcharían hacia Babilonia, y muchos más allá, hasta los confines del mundo conocido. Pero allí, en el país de los faraones, el magno conquistador se permitió una pausa con el propósito de levantar una ciudad, su ciudad. Eligió para ello un punto en la costa mediterránea, el sitio indicado para servir de puente entre el mundo griego al otro lado del mar, y el Valle del Nilo que se prolongaba internándose en el corazón de África. Pero Alejandro no se demoraría mucho y partiría poco después en busca de mayor gloria. Nunca más volvería a Alejandría.

Alejandro murió nueve años más tarde y el legendario imperio fue dividido entre sus generales, no sin mediar sangrientas disputas entre ellos. Pero en definitiva, fue Ptolomeo Sóter (Ptolomeo I), uno de los hombres de confianza de Alejandro, quien se quedaría con Egipto, y a la larga fundaría la dinastía Ptolemaica que perduraría por casi tres siglos hasta los tiempos Cleopatra.

Fue durante el gobierno de Ptolomeo I que nació lo que luego llegaría a conocerse como la Gran Biblioteca. Su origen se remonta hacia alrededor del 300 a.C. cuando llegó a Alejandría el filósofo y político Demetrio de Faleron, quien venia exiliado desde Atenas y con la misión de hacerse cargo de la educación del hijo del rey. Demetrio había sido discípulo de Aristóteles, y pronto convenció a Ptolomeo I de la necesidad de fundar en Egipto una institución semejante al Liceo. El propio Demetrio parece haber traído consigo numerosos textos que pondría a disposición del proyecto y que pasarían a ser los primeros ejemplares de la colección de la Biblioteca.

BibliotecaBajo el amparo de los Ptolomeo la Biblioteca se convirtió en el más espléndido centro de investigación de toda la antigüedad. Su edificio principal poseía un gran salón de techo abovedado, numerosas salas de clases y un observatorio en la terraza superior. Todo ello estaba rodeado de paseos y jardines, y hasta había un zoológico con exóticas criaturas provenientes de lejanas tierras. En sus instalaciones vivían y trabajaban quizás medio centenar de estudiosos en forma permanente, a los que se sumaban aquellos que venían de visita por alguna temporada.

La colección, que incluía tanto papiros como pergaminos, creció rápidamente gracias a diversas políticas implementadas por el gobierno con dicho objetivo. Por ejemplo, cualquier embarcación que recalára en el puerto de Alejandría debía, por ley, entregar todo manuscrito en su posesión a fin de ser debidamente copiado por escribas de la Biblioteca. De esta forma se calcula que llegaron a acumularse en sus estantes más de medio millón de documentos; entre ellos sin duda se hallaba contenido el grueso del conocimiento y los logros intelectuales conquistados por occidente hasta ese momento (ver recuadro), .

Llegado a Alejandría aproximadamente al mismo tiempo que Demetrio, Strato de Lampsacus también fue tutor del príncipe Filadelfo y participó en la creación de la Biblioteca. Había estudiado en el Liceo y allí se intereso particularmente en la física. Tomando como punto de partida los trabajos de Aristóteles, descubrió la aceleración de los cuerpos en caída libre. También propone que un constituyente importante de la materia sería el vacío, y que tal hecho explicaría la diferencia de peso entre objetos de volumen semejante. Strato regresó a Atenas en el 287 a.C. como flamante nuevo director del Liceo, pero no sin antes haber ayudado a consolidar la temprana vocación de la Biblioteca por la investigación en ciencias naturales. Por ejemplo, uno de sus alumnos en Alejandría habría sido Aristarco de Samos.

Aristarco nació en Jonia en el 310 a.C. Muy poco se sabe de su vida y la mayor parte de su obra se ha perdido. Sin embargo los pocos fragmentos que han llegado hasta nuestros días nos demuestran que este hombre habría comprendido una de las verdades más revolucionarias de la historia de la ciencia más de quince siglos antes que Copérnico o Galileo. Aristarco, en efecto, propone que es el Sol, y no la Tierra, el centro del universo. Por supuesto, hoy sabemos que tampoco el Sol lo es, y que de hecho no existiría tal cosa como un punto medio del Cosmos, al menos dentro de los confines tridimensionales del universo. Pero por supuesto Aristarco nada sabia de galaxias ni de Big Bangs y tal inexactitud es más que excusable dada las limitaciones de su tiempo, y en nada menoscaba la impresionante magnitud de su logro intelectual.

La verdad sea dicha, otros antes que Aristarco ya se habían atrevido a sacar a la Tierra de su posición de privilegio en el concierto cósmico. El pitagórico Filolao de Crotona había señalado que tanto el Sol como la Tierra giraban en torno a un fuego central. Era un modelo lleno de complicados detalles necesarios para ajustar las observaciones con los conceptos que los pitagóricos tenían acerca de la perfección de los números. Estas exigencias ideológicas impidieron que Filolao pudiese considerar una posibilidad más simple y verdadera, la misma que un siglo y medio más tarde propondría Aristarco.

Ciertamente los antiguos comprendían que la bóveda celeste era inmensa. Pero aun así dentro de los limites de tamaño y distancia que nuestra mente es capaz de entender a partir de la experiencia común. ¿Qué tan alto esta el Sol? Mucho por supuesto, pero no tanto como para que su calor no nos alcance. Si a pocos pasos una fogata ya no nos abriga, ¿cómo podían ellos imaginar que el Sol se hallaba a 150 millones de kilómetros?

El primer logro de Aristarco fue abandonar las concepciones tradicionales de distancia. El universo, es grande, si, pero mucho más de lo que jamas habíamos imaginado. Este paso conceptual permite resolver el principal problema que presentaba una teoría heliocéntrica del universo; esto es, si la Tierra se mueve, entonces debiéramos ser capaces de observar cambios en la posición de las estrellas fijas, ya que algunas estarán más cerca o más lejos de nosotros en distintos momentos del año. Este fenómeno ocurre en realidad (es el fundamento del Método de Paralaje) pero dado que las distancias involucradas son demasiado grandes el movimiento aparente de las estrellas no puede ser apreciado a simple vista. Esa es la respuesta de Aristarco, y es la respuesta correcta.

Como sabemos las ideas de Aristarco no tuvieron mayor repercusión en su momento y en los siglos que siguieron. Pasaría mucho tiempo antes de que los hechos le dieran la razón y su nombre por fin se incluyera en la lista de los grandes genios de la antigüedad.

Mejor suerte tuvo otro de los primeros estudiosos asociados a la Biblioteca. Se trata de Euclides, de cuya vida tampoco se sabe mucho, aunque se cree que estudió en la Academia de Platón, donde habría aprendido los principios de la geometría desarrollados por sus predecesores. En algún momento de su juventud se habría trasladado a Alejandría, donde trabajaría como maestro y escribiendo su libro “Los Elementos”. Uno de sus alumnos fue el propio rey Ptolomeo I, quien en una ocasión, frustrado por las dificultades de los teoremas, le preguntó si acaso había una forma más fácil de entender la geometría. El matemático le contestó que si bien en el mundo real hay caminos lentos para la gente común y caminos rápidos reservados solo para los reyes, lamentablemente en la geometría no había ningún camino especial para la nobleza. Es decir, que sólo se puede alcanzar el conocimiento a través del progresivo, y a veces penoso, estudio de la disciplina. Euclides habría permanecido en al ciudad de Alejandro hasta su muerte en el 265 a.C.

“Los Elementos” es una extensa obra dividida en trece capítulos, y quizás sea uno de los textos que más ha influido en el desarrollo del pensamiento occidental después de la Biblia. Esto no solo por ser una completa síntesis del saber geométrico de la época, sino que además porque establece un método de desarrollar los argumentos que es lo que hoy aceptamos como una forma correcta de razonar. Esto es; primero generando un conjunto de definiciones que sean consistentes entre ellas mismas; segundo, proponiendo los postulados y enunciando los teoremas de acuerdo a dichas definiciones; y tercero, obteniendo las pruebas que demuestren la validez de los teoremas establecidos.

En lo que se refiere a las definiciones, lo más notable de Euclides es su capacidad de abstracción, es decir, de identificar el aspecto de la realidad que es pertinente para el análisis, despojándose de todo aquello que es irrelevante. Euclides establece unas 130 definiciones matemáticas, entre las que tenemos;

  • Definición 1,1: Un punto es lo que no tiene partes (dimensiones).
  • Definición 1,2: Una línea es una longitud sin anchura.
  • Definición 1,5: Una superficie es aquello que solo tiene longitud y anchura.

Estos tres ejemplos en particular ilustran el tema de la abstracción, pues como sabemos en la realidad cotidiana todos los objetos poseen tres dimensiones (longitud, anchura y altura), pero debemos “abstraer” algunas de ellas si queremos estudiar las propiedades de un triángulo (que es bidimensional). Otro ejemplo es el caso del “punto”; el punto ideal no posee ninguna dimensión, no es ni largo, ni ancho, ni alto, y por lo tanto, en términos reales no existe. De ahí que tengamos que hacer un ejercicio de abstracción a la hora de imaginar un punto geométrico.

Asimismo, estas definiciones son importantes pues establecen el campo de trabajo de la geometría euclidiana, que son las superficies o volúmenes planos. Cuando Euclides establece luego, en uno de sus teoremas, que la suma de los ángulos interiores de todo triángulo es igual a 180o, el está pensando en un triángulo dibujado en un plano. Si usted dibuja ese mismo triángulo sobre la superficie de una esfera puede comprobar que la propiedad ya no se cumple. De esta forma, cuando los matemáticos necesitaron herramientas para estudiar planos o espacios curvados en tres o más dimensiones, desarrollaron lo que se conoce como “geometría no euclidiana”.

Otras definiciones “euclidianas” que puede ser útil recordar son;

  • Definición 1,15: Un círculo es una figura plana comprendida por una sola línea (llamada circunferencia) de tal modo que todas las rectas dibujadas que caen sobre ella desde un punto de los que están dentro de la figura son iguales entre sí.
  • Definición 1,20: De los triángulos, el equilátero es el que tiene los tres lados iguales; isósceles el que tiene dos lados iguales y uno desigual; y escaleno el que tiene los tres lados desiguales.
  • Definición 1,21: De los triángulos, triángulo rectángulo es el que tiene un ángulo recto, obtusángulo el que tiene un ángulo obtuso y acutángulo el que tiene los tres ángulos agudos.

A partir de sus definiciones Euclides establece sus cinco postulados o axiomas básicos, esto es, cinco afirmaciones fundamentales que son dadas como verdaderas sin necesidad de pruebas. Así que si alguien demostrase que alguno de estos axiomas es falso toda la geometría euclidiana se derrumbaría como un castillo de naipes. Estos postulados son:

  • Postulado 1: Dados dos puntos se puede trazar una y sólo una recta que los une.
  • Postulado 2: Cualquier segmento puede prolongarse de forma continua en cualquier sentido.
  • Postulado 3: Se puede trazar una circunferencia con centro en cualquier punto y de cualquier radio.
  • Postulado 4: Todos los ángulos rectos son iguales.
  • Postulado 5: Si una recta al cortar a otras dos forma ángulos internos menores a un ángulo recto, esas dos rectas prolongadas indefinidamente se cortan del lado en el que están los ángulos menores que dos rectos.

Establecido lo anterior, Euclides procede a enunciar casi medio centenar de proposiciones o teoremas, referidos a temas tales como las propiedades de triángulos y circunferencias, proporciones y números racionales e irracionales, números primos, y también sobre sólidos tridimensionales y su medición. Cabe mencionar aquí dos de sus más famosas proposiciones:

  • Proposición 1,32: En cualquier triángulo, si uno de los lados se prolonga, el ángulo exterior es igual a la suma de los ángulos interiores y opuestos, y la suma de los tres ángulos del triángulo es de dos ángulos rectos.
  • Proposición 9,20: Hay más números primos que cualquier cantidad propuesta de números primos.

La primera nos dice que la suma de los ángulos interiores de un triangulo es de 180°.

La segunda, que la cantidad de números primos es infinita. La demostración de este último teorema es particularmente elegante. En ella Euclides hace uso del método de reducción al absurdo, el mismo que Zenón hizo famoso con su cuento sobre Aquiles y la tortuga, y por lo tanto recomendamos su revisión (ver recuadro), .

Hay que señalar sin embargo que muchos de los teoremas enunciados por Euclides eran ya conocidos, por ejemplo, los de Tales y de Pitágoras. El verdadero aporte de Euclides fue acumular, organizar y sintetizar en forma espléndida todo lo realizado por sus predecesores, con tal éxito que su obra seria referencia obligatoria y casi exclusiva en el campo de la geometría durante los próximos dos mil años en occidente, y aun hoy representa el grueso de lo que se enseña en las escuelas primarias y secundarias en todo el mundo.

Ptolomeo I fue sucedido naturalmente por su hijo Ptolomeo Filadelfo. Como se señaló anteriormente, Demetrio de Falera había sido tutor del nuevo rey, por lo que no es de sorprender que este fuera un entusiasta mecenas de la Biblioteca. A la muerte de Demetrio, Ptolomeo II le encomendaría a Zenódoto de Éfesos, estudioso de las letras y la gramática, la misión de administrar la Biblioteca, nombrándolo primer director de la misma. Dos décadas más tarde el cargo pasaría a manos de Calimaco de Cirene, quien llevaría a cabo el primer esfuerzo de catalogar por tema al menos una parte (solo 120.000 textos) del material ya acumulado en la Biblioteca. Luego vendría Apolonio de Rodas, y finalmente, en el 235 a.C., sería el turno del geógrafo Eratóstenes de Cirene.

Eratóstenes es recordado principalmente por su acertada estimación de la curvatura de la Tierra, y al mismo tiempo por haber ofrecido una prueba irrefutable demostrando la redondez de nuestro planeta. Ya Aristóteles había sugerido que el mundo era una esfera, pero basado más bien en aspiraciones estéticas sobre la perfección del universo. Algunas observaciones apoyaban la hipótesis, por cierto. Está el hecho de que las velas más altas de un barco pueden apreciarse aun cuando el resto de la embarcación ya ha desaparecido bajo el horizonte, o la forma de la difusa sombra que la Tierra proyecta sobre la blanca faz de nuestro satélite natural durante un eclipse de Luna. Pero tales “pruebas” eran ciertamente discutibles pues habían muchas otras posibilidades que podían explicar tales fenómenos. Y por supuesto, ninguna de ellas ofrecía una idea del posible tamaño de nuestro mundo.

Pues bien. Llegó a oídos de Eratóstenes que en la localidad de Siena (en Egipto, actual Asuán) cada año precisamente al mediodía del día más largo del año, el solsticio de verano, era el único instante en que los rayos del Sol alcanzaban el fondo de un pozo de aquellos que se utilizan para sacar agua. Este fenómeno no parece ser muy distinto al que los antiguos solían registrar en sus observatorios de piedra donde el Sol iluminaba sitios especiales en momentos determinados. Sin embargo hay una diferencia fundamental y es que el pozo es vertical, lo que significa que el Sol en ese momento está precisamente arriba, al extremo de una línea imaginaria que intersecta el suelo en Siena en un ángulo de 90o. Eratóstenes constató que en Alejandría en ese mismo momento cualquier objeto perpendicular al suelo proyectaba una sombra equivalente a la octava parte de su longitud. Usando relaciones trigonométricas estableció que los rayos del Sol en Alejandría formaban un ángulo de 82,88o con la superficie. Esto es, una diferencia de 7,12o con el pozo de Siena, la 1/50,5 parte de los 360o que comprende una circunferencia. ¿Qué es necesario hacer ahora? Pues medir la distancia entre Alejandría y Siena. Y fue lo que Eratóstenes hizo.

Método de EratóstenesAlgunos dicen que contrató a un hombre para realizar el arduo trabajo, otros que calculó el dato a partir del tiempo que les llevaba a las caravanas comerciales realizar el trayecto entre las dos ciudades. Como sea, el resultado fueron 5.000 estadios egipcios, 787,5 kms. Que multiplicado por 50,5 da 39.769 kms. La estimación contemporánea del perímetro terrestre es de 39.941 kms, una diferencia de menos del 1%. ¡Que ganas de poder viajar en el tiempo y decirle a Eratóstenes que estaba en lo cierto! Aunque por otro lado, dicen que era de carácter orgulloso y despectivo así que quizás no deberíamos esperar una respuesta demasiado acogedora de su parte.

Eratóstenes además fue destacado cartógrafo, elaborando detallados mapas que reunían todo el saber geográfico de la época. Escribió un tratado sobre el tema y en el hace uso de líneas arbitrarias para identificar la posición de distintos lugares, los fundamentos mismos de lo que luego llegaría a ser el familiar sistema de paralelos y meridianos.

Pero los logros científicos de Eratóstenes parecen palidecer al lado de los conseguidos por un amigo suyo, un hombre que sin duda esta entre los más grandes eruditos de la antigüedad. Se trata del maestro de la mecánica física, Arquímedes de Siracusa.

La Biblioteca de Alejandría no fue la única gran biblioteca de su tiempo. El rey Eúmenes II de Pérgamo, en Tracia, quien gobernó entre el 197 a.C. y el 158 a.C., levantó una institución semejante que llegaría a albergar más de 200.000 escritos.
Buscando perjudicar a sus rivales, los Ptolomeo de Egipto prohibieron las exportaciones de papiro a Pérgamo. Entonces el rey ordenó buscar un medio alternativo para realizar escritura. La solución fueron parches de piel de oveja, pelado, pulido y estirado, y que recibieron el adecuado nombre de “pergaminos”.
volver

El Teorema Fundamental de la Aritmética, enunciado por Euclides en su Libro IX (proposición 14), dice que todo número no-primo (compuesto) puede ser expresado como el producto de números primos. Por ejemplo, 24 es el producto de 6 x 4, pero;
6 = 3 x 2, y 4 = 2 x 2.
Por lo tanto;
24 = 3 x 2 x 2 x 2, todos números primos.Ahora bien, en la Proposición 20 del Libro IX de “Los Elementos”, Euclides establece que la cantidad de números primos es infinita demostrando que la opción alternativa es absurda e imposible.
Así, imagine que hay una cantidad limitada de números primos, digamos, tres, a saber P1, P2 y P3.
Es posible entonces multiplicar los tres números primos y sumarles uno, de modo que;
(P1 x P2 x P3) + 1 = X

Hemos dicho que solo existen 3 números primos, o sea, que “X” debe ser un número no primo (compuesto).
Por el Teorema Fundamental de la Aritmética señalado anteriormente sabemos que todo número compuesto puede dividirse por los primos que lo forman.
Pero P1 x P2 x P3 no es igual a X, sobra 1. Por lo tanto es necesario que exista otro número primo, P4, de modo que X pueda ser expresado solo como producto de primos.
Cualquiera sea la cantidad de números primos que sugiramos, este método hará necesario que exista uno más, y otro, y otro, sucesivamente hasta el infinito.
volver